skip to main content


Title: Seasonal survival and reversible state effects in a long‐distance migratory shorebird
Abstract

Events during one stage of the annual cycle can reversibly affect an individual's condition and performance not only within that stage, but also in subsequent stages (i.e. reversible state effects). Despite strong conceptual links, however, few studies have been able to empirically link individual‐level reversible state effects with larger‐scale demographic processes.

We studied both survival and potential reversible state effects in a long‐distance migratory shorebird, the Hudsonian GodwitLimosa haemastica. Specifically, we estimated period‐specific survival probabilities across the annual cycle and examined the extent to which an individual's body condition, foraging success and habitat quality during the nonbreeding season affected its subsequent survival and reproductive performance.

Godwit survival rates were high throughout the annual cycle, but lowest during the breeding season, only slightly higher during southbound migration and highest during the stationary nonbreeding season. Our results indicate that overwintering godwits foraging in high‐quality habitats had comparably better nutritional status and pre‐migratory body condition, which in turn improved their return rates and the likelihood that their nests and chicks survived during the subsequent breeding season.

Reversible state effects thus appeared to link events between nonbreeding and breeding seasons via an individual's condition, in turn affecting their survival and subsequent reproductive performance. Our study thus provides one of the few empirical demonstrations of theoretical predictions that reversible state effects have the potential to influence population dynamics.

 
more » « less
NSF-PAR ID:
10456326
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
89
Issue:
9
ISSN:
0021-8790
Page Range / eLocation ID:
p. 2043-2055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Evolutionary and behavioural ecologists have long been interested in factors shaping the variation in mating behaviour observed in nature. Although much of the research on this topic has focused on the consequences of mate choice and mate change on annual reproductive success, studies of a potential positive link between mate fidelity and adult demographic rates have been comparatively rare. This is particularly true for long‐lived birds with multi‐year, socially monogamous pair bonds.

    We used a 26‐year capture–mark–recapture dataset of 3,330 black brentBranta bernicla nigricansto test whether breeding with a familiar mate improved future breeding propensity and survival. We predicted that experienced breeders nesting with a new partner would have rates of survival similar to familiar pairs because long‐lived species avoid jeopardizing survival since their lifetime fitness is sensitive to this vital rate. In contrast, we expected that any costs of breeding with a new partner would be paid through skipping the subsequent breeding attempt.

    We found that unfamiliar pairs had lower subsequent breeding propensity than faithful partners. However, contrary to our expectations, individuals breeding with a new mate also suffered reduced survival.

    These results add to a small number of studies indicating that a positive relationship between mate retention and adult demographic rates may exist in a diverse array of avian species. Given these results, researchers should consider costs of mate change that extend beyond within‐season reproductive success to fully understand the potential adaptive basis for perennial social monogamy. We caution that if mate retention enhances survival prospects, improvements in annual reproductive success with pair‐bond length could be a secondary factor favouring perennial social monogamy, particularly in species with slower life‐history strategies. Furthermore, some cases where annual reproductive success does not improve with pair‐bond duration, yet multi‐year pair bonds are common, could be explained by benefits afforded by mate fidelity to adult vital rates.

     
    more » « less
  2. Abstract

    Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among‐individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioural differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically.

    Here, we used a unique, long‐term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture‐mark‐recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life‐history outcomes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate).

    We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non‐breeders, which suggests longer inter‐breeding intervals due to higher reproductive allocation.

    Our results reveal that the link between boldness and demography is more complex than anticipated by the pace‐of‐life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography.

     
    more » « less
  3. Abstract

    Developing conservation and recovery strategies for Nearctic–Neotropical migratory songbirds requires key research because population-limiting factors remain unknown for many species. In particular, the stationary nonbreeding period (sometimes referred to as overwintering) encompasses 6–8 months of the full annual cycle. We conducted a systematic review to assess what is known about the factors that influence individual-level performance (i.e., fitness proxies or indicators of self-maintenance) of Nearctic–Neotropical migratory songbirds during the stationary nonbreeding period. We focused on the metrics of apparent survival, persistence, and body condition (mass-related) indices. We found that 51 of 125 migratory Passeriformes species’ performance has been studied in 57 studies during the nonbreeding period. However, most species appear in only one study; thus, knowledge is skewed toward 3 species appearing in ≥ 10 studies. Body condition indices were the most studied group of metrics and apparent survival was the least studied. Habitat type, food availability, and precipitation were studied much more than other drivers, such as disease and predation. The most studied driver of nonbreeding performance was habitat type. Evidence was found among these studies that suggest that natural habitat types, wetter habitats or precipitation, and high availability of food may positively influence body condition, apparent survival, and persistence. Significant knowledge gaps remain that, if filled, could inform conservation strategies, especially for 59.2% of Passeriformes that are Nearctic–Neotropical migratory species and for areas of the nonbreeding range.

     
    more » « less
  4. Abstract

    Environmental and anthropogenic factors affect the population dynamics of migratory species throughout their annual cycles. However, identifying the spatiotemporal drivers of migratory species' abundances is difficult because of extensive gaps in monitoring data. The collection of unstructured opportunistic data by volunteer (citizen science) networks provides a solution to address data gaps for locations and time periods during which structured, design‐based data are difficult or impossible to collect.

    To estimate population abundance and distribution at broad spatiotemporal extents, we developed an integrated model that incorporates unstructured data during time periods and spatial locations when structured data are unavailable. We validated our approach through simulations and then applied the framework to the eastern North American migratory population of monarch butterflies during their spring breeding period in eastern Texas. Spring climate conditions have been identified as a key driver of monarch population sizes during subsequent summer and winter periods. However, low monarch densities during the spring combined with very few design‐based surveys in the region have limited the ability to isolate effects of spring weather variables on monarchs.

    Simulation results confirmed the ability of our integrated model to accurately and precisely estimate abundance indices and the effects of covariates during locations and time periods in which structured sampling are lacking. In our case study, we combined opportunistic monarch observations during the spring migration and breeding period with structured data from the summer Midwestern breeding grounds. Our model revealed a nonstationary relationship between weather conditions and local monarch abundance during the spring, driven by spatially varying vegetation and temperature conditions.

    Data for widespread and migratory species are often fragmented across multiple monitoring programs, potentially requiring the use of both structured and unstructured data sources to obtain complete geographic coverage. Our integrated model can estimate population abundance at broad spatiotemporal extents despite structured data gaps during the annual cycle by leveraging opportunistic data.

     
    more » « less
  5. Abstract

    Seasonal migrations are fascinating and ecologically important, but many migratory species are declining as climate change and land‐use change alter the habitats used by migrants across the annual cycle. While some migratory birds use a single wintering site, others undertake large‐scale post‐migratory movements during the nonbreeding season. Technological advances that enable tracking individual birds are uncovering more examples of post‐migratory nonbreeding movements. Documenting these movements is important for conservation, which requires understanding when and where migrants use habitats throughout their range. Here, we reviewed existing literature and collected information on the post‐migratory nonbreeding movements of 92 migratory bird species from 18 orders across six continents. Among these records, the most commonly reported drivers of movements were resource availability and climate. This strong dependence of post‐migratory nonbreeding movements on birds' abiotic and biotic environments suggests that environmental change will impact the patterns of these movements and potentially the fitness of species that undertake them. We also reviewed post‐migratory nonbreeding movements in North American‐breeding thrushes from the genusCatharusto examine the drivers of these movements in five closely related migratory species. We find that species that are less territorial are more likely to use multiple sites during the nonbreeding season; however, there is little evidence for dietary, evolutionary, or environmental differences between thrush species that move during winter and those that are stationary. While we believe our study represents the most comprehensive list of species exhibiting post‐migratory nonbreeding movements to date, biases in sampling, a lack of common terminology for these movements, and the still‐nascent availability of inexpensive, lightweight tracking devices mean that there are probably more populations that undertake such movements. Future research into the consequences of post‐migratory nonbreeding movements for individual fitness and ecosystem services would advance our understanding of their conservation importance and their evolution.

     
    more » « less