Abstract AimWe explore the biogeographic history of the Gondwanan lineage Triaenonychidae, a dispersal‐limited arachnid taxon that underwent a recent taxonomic revision based on phylogenomic data. We explicitly test hypotheses related to a biogeographical pattern of ‘common vicariance, rare dispersal’, predicted for dispersal‐limited taxa. LocationContinental landmasses of former temperate Gondwanan terranes (southern South America, southern Africa, Madagascar, Australia, New Zealand, and New Caledonia). TaxonTriaenonychidae, Opiliones, Arachnida. MethodsUtilizing a recently published phylogenomic data set based on ultra‐conserved elements, we conduct Bayesian divergence dating analyses, ancestral area estimation in a likelihood model testing framework, and analyses of macroevolutionary dynamics. Results are correlated with geological history and palaeoclimate reconstructions to infer biogeographic history and distribution. ResultsWe find that divergence dates of ancestral Triaenonychidae pre‐date continental breakup of Gondwana and could be attributed to palaeoclimatic differentiation across Gondwana. There is evidence for two separate expansion routes that span eastern and western Gondwana corresponding to northern warmer climate and southern cooler climate lineages. Many divergences across intercontinental lineages coincide with the timing of continental fragmentation, supporting vicariance as a dominant force. However, some lineages are supported as obvious examples of rare long‐distance dispersal. Biogeographic results support the predicted pattern of common vicariance and rare dispersal for these dispersal‐limited organisms. Main conclusionsVicariance due to continental fragmentation was important in the early diversification of Triaenonychidae. Their unique combination and degrees of dispersal ability and microhabitat preference resulted in complex phylogenetic patterns of geographic distribution not typically seen in other animal taxa. Examining biogeographic patterns across recent studies of arachnid taxa with varying dispersal ability, it is clear that biological characteristics play an important role in the relative importance of dispersal and vicariance (dispersal–vicariance continuum) for any given taxon and can be useful in forming testable a priori hypotheses. 
                        more » 
                        « less   
                    
                            
                            A well‐resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance
                        
                    
    
            Abstract AimWe explored the extent to which Gondwanan vicariance contributed to the circum‐Antarctic distribution of the mite harvestman family Pettalidae, a group of small, dispersal‐limited arachnids whose phylogeny has been poorly resolved, precluding rigorous biogeographic hypothesis testing. LocationContinental landmasses of former temperate Gondwana (Chile, South Africa, Sri Lanka, Australia and New Zealand). TaxonPettalidae, Opiliones. MethodsWe generated transcriptomes for a phylogeny of 16 pettalids, spanning 9 genera. Data were analysed using maximum likelihood, Bayesian inference and coalescence methods. The phylogenetic position of the Sri Lankan genusPettaluswas further explored using quartet likelihood mapping and changes in gene likelihood scores. We also estimated divergence times and looked for signatures of extinction across Antarctica and central Australia using previously published phylogenies with near‐complete species sampling constrained to match our transcriptomic results. Finally, we estimated ancestral ranges and inferred instances of vicariance. ResultsWe recovered a well‐supported topology with a division between taxa from landmasses that made up East Gondwana, and a grade of taxa from West Gondwana.Pettaluswas resolved either as the sister group of the Queensland‐endemicAustropurcellia, or as the sister group to a larger clade from East Gondwana, though favouringPettalus + Austropurcellia. Divergence times for multiple vicariance events coincided with Gondwana's breakup. Speciation–extinction analysis found one diversification process for the family: an initial burst of cladogenesis that slowed down through time. Main ConclusionsGiven that the order of cladogenesis corresponds to the order in which Gondwana fragmented, and the concurrent timing of vicariance and rifting, Gondwanan breakup explains major biogeographic patterns in Pettalidae. Some divergences predate initial rifting, but there is no evidence oftrans‐oceanic dispersal. The Sri Lanka–eastern Australia relationship makes sense in the light of large‐scale extinction across Antarctica and central Australia; however, we find no clear signatures of mass extinction. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10456371
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Biogeography
- Volume:
- 47
- Issue:
- 6
- ISSN:
- 0305-0270
- Page Range / eLocation ID:
- p. 1345-1361
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT AimWe assess the systematic relationships and historical biogeographic patterns in the subfamily Scincinae, a group of lizards that primarily inhabits the Afro‐Madagascan and Saharo‐Arabian regions with isolated lineages in Europe, North America, East Asia, India and Sri Lanka. The contemporary distribution of these lineages on the historical Laurasian and Gondwanan landmasses make scincines an ideal system to study the roles of vicariance and dispersal on a geologic scale of tens of millions of years. LocationGlobal. TaxonSubfamily Scincinae (Family Scincidae). MethodsWe conducted biogeographic analyses on a reconstructed, time‐calibrated species tree of scincine genera, including members of the other Scincidae subfamilies, using seven nuclear loci (~6 k base pairs). We also constructed a lineage‐through‐time plot to assess the timing of diversification within scincines. ResultsOur analysis estimated strong support for the monophyly of Scincinae that is further comprised a strongly‐supported Gondwanan clade nested within a broader Laurasian group. While most of the extant, genus‐level diversity within the Gondwanan clade was accrued post‐Eocene, the majority of the Laurasian lineages diverged during the Palaeocene or earlier, suggesting large‐scale extinctions on continents of Laurasian origin. Counterintuitively, scincines from India and Sri Lanka have distinct biogeographical origins despite a long tectonic association between these landmasses, suggesting at least two independent, long‐distance, trans‐oceanic dispersal events into the subcontinent. Our biogeographic analyses suggest that scincines likely originated in East and Southeast Asia during the late Cretaceous (ca. 70 Ma), and eventually dispersed westwards to Africa and Madagascar, where their greatest current‐day species richness occurs. Main ConclusionsOur study demonstrates the concomitant roles of dispersal and extinction in shaping modern‐day assemblages of ancient clades such as scincine lizards. Our range evolution analysis shows that despite the greater diversity observed in the Afro‐Madagascan region, the origin of scincines can be traced back to Southeast Asia and East Asia, followed by westward dispersals. These dispersals may have been followed by significant extinctions in tropical East Asia, resulting in relatively lower diversity of scincines in these regions. Notably, our analysis reveals that Sri Lankan and Peninsular Indian scincines have distinct evolutionary origins.more » « less
- 
            null (Ed.)Triaenonychidae Sørensen in L. Koch, 1886 is a large family of Opiliones with ~480 described species broadly distributed across temperate forests in the Southern Hemisphere. However, it remains poorly understood taxonomically, as no comprehensive phylogenetic work has ever been undertaken. In this study we capitalise on samples largely collected by us during the last two decades and use Sanger DNA-sequencing techniques to produce a large phylogenetic tree with 300 triaenonychid terminals representing nearly 50% of triaenonychid genera and including representatives from all the major geographic areas from which they are known. Phylogenetic analyses using maximum likelihood and Bayesian inference methods recover the family as diphyletic, placing Lomanella Pocock, 1903 as the sister group to the New Zealand endemic family Synthetonychiidae Forster, 1954. With the exception of the Laurasian representatives of the family, all landmasses contain non-monophyletic assemblages of taxa. To determine whether this non-monophyly was the result of Gondwanan vicariance, ancient cladogenesis due to habitat regionalisation, or more recent over-water dispersal, we inferred divergence times. We found that most divergence times between landmasses predate Gondwanan breakup, though there has been at least one instance of transoceanic dispersal – to New Caledonia. In all, we identify multiple places in the phylogeny where taxonomic revision is needed, and transfer Lomanella outside of Triaenonychidae in order to maintain monophyly of the family.more » « less
- 
            null (Ed.)Abstract The ‘Out of India’ hypothesis is often invoked to explain patterns of distribution among Southeast Asian taxa. According to this hypothesis, Southeast Asian taxa originated in Gondwana, diverged from their Gondwanan relatives when the Indian subcontinent rifted from Gondwana in the Late Jurassic, and colonized Southeast Asia when it collided with Eurasia in the early Cenozoic. A growing body of evidence suggests these events were far more complex than previously understood, however. The first quantitative reconstruction of the biogeography of Asian forest scorpions (Scorpionidae Latreille, 1802: Heterometrinae Simon, 1879) is presented here. Divergence time estimation, ancestral range estimation, and diversification analyses are used to determine the origins, dispersal and diversification patterns of these scorpions, providing a timeline for their biogeographical history that can be summarized into four major events. (1) Heterometrinae diverged from other Scorpionidae on the African continent after the Indian subcontinent became separated in the Cretaceous. (2) Environmental stresses during the Cretaceous–Tertiary (KT) mass extinction caused range contraction, restricting one clade of Heterometrinae to refugia in southern India (the Western Ghats) and Sri Lanka (the Central Highlands). (3) Heterometrinae dispersed to Southeast Asia three times during India’s collision with Eurasia, the first dispersal event occurring as the Indian subcontinent brushed up against the western side of Sumatra, and the other two events occurring as India moved closer to Eurasia. (4) Indian Heterometrinae, confined to southern India and Sri Lanka during the KT mass extinction, recolonized the Deccan Plateau and northern India, diversifying into new, more arid habitats after environmental conditions stabilized. These hypotheses, which are congruent with the geological literature and biogeographical analyses of other taxa from South and Southeast Asia, contribute to an improved understanding of the dispersal and diversification patterns of taxa in this biodiverse and geologically complex region.more » « less
- 
            The separation of closely related terrestrial or freshwater species by vast marine barriers represents a biogeographical riddle. Such cases can provide evidence for vicariance, a process whereby ancient geological events like continental rifting divided ancestral geographical ranges. With an evolutionary history extending tens of millions of years, freshwater ecology, and distribution encompassing widely separated southern landmasses, osteoglossid bonytongue fishes are a textbook case of vicariance attributed to Mesozoic fragmentation of the Gondwanan supercontinent. Largely overlooked fossils complicate the clean narrative invoked for extant species by recording occurrences on additional continents and in marine settings. Here, we present a new total-evidence phylogenetic hypothesis for bonytongue fishes combined with quantitative models of range evolution and show that the last common ancestor of extant osteoglossids was likely marine, and that the group colonized freshwater settings at least four times when both extant and extinct lineages are considered. The correspondence between extant osteoglossid relationships and patterns of continental fragmentation therefore represents a striking example of biogeographical pseudocongruence. Contrary to arguments against vicariance hypotheses that rely only on temporal or phylogenetic evidence, these results provide direct palaeontological support for enhanced dispersal ability early in the history of a group with widely separated distributions in the modern day.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
