skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Physical and Biogeochemical Controls on pH Dynamics in the Northern Gulf of Mexico During Summer Hypoxia
Abstract

High‐accuracy spectrophotometric pH measurements were taken during a summer cruise to study the pH dynamics and its controlling mechanisms in the northern Gulf of Mexico in hypoxia season. Using the recently available dissociation constants of the purified m‐cresol purple (Douglas & Byrne, 2017,https://doi.org/10.1016/j.marchem.2017.10.001; Müller & Rehder, 2018,https://doi.org/10.3389/fmars.2018.00177), spectrophotometrically measured pH showed excellent agreement with pH calculated from dissolved inorganic carbon (DIC) and total alkalinity over a wide salinity range of 0 to 36.9 (0.005 ± 0.016,n= 550). The coupled changes in DIC, oxygen, and nutrients suggest that biological production of organic matter in surface water and the subsequent aerobic respiration in subsurface was the dominant factor regulating pH variability in the nGOM in summer. The highest pH values were observed, together with the maximal biological uptake of DIC and nutrients, at intermediate salinities in the Mississippi and Atchafalaya plumes where light and nutrient conditions were favorable for phytoplankton growth. The lowest pH values (down to 7.59) were observed along with the highest concentrations of DIC and apparent oxygen utilization in hypoxic bottom waters. The nonconservative pH changes in both surface and bottom waters correlated well with the biologically induced changes in DIC, that is, per 100‐μmol/kg biological removal/addition of DIC resulted in 0.21 unit increase/decrease in pH. Coastal bottom water with lower pH buffering capacity is more susceptible to acidification from anthropogenic CO2invasion but reduction in eutrophication may offset some of the increased susceptibility to acidification.

 
more » « less
NSF-PAR ID:
10456375
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
8
ISSN:
2169-9275
Page Range / eLocation ID:
p. 5979-5998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022,https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange.

     
    more » « less
  2. Climate change is causing decreases in pH and dissolved oxygen (DO) in coastal ecosystems. Canopy-forming giant kelp can locally increase DO and pH through photosynthesis, with the most pronounced effect expected in surface waters where the bulk of kelp biomass resides. However, limited observations are available from waters in canopies and measurements at depth show limited potential of giant kelp to ameliorate chemical conditions. We quantified spatiotemporal variability of surface biogeochemistry and assessed the role of biological and physical drivers in pH and DO modification at two locations differing in hydrodynamics inside and outside of two kelp forests in Monterey Bay, California in summer 2019. pH, DO, dissolved inorganic carbon (DIC), and temperature were measured at and near the surface, in conjunction with physical parameters (currents and pressure), nutrients, and metrics of phytoplankton and kelp biological processes. DO and pH were highest, with lower DIC, at the surface inside kelp forests. However, differences inside vs. outside of kelp forests were small (DO 6–8%, pH 0.05 higher in kelp). The kelp forest with lower significant wave height and slower currents had greater modification of surface biogeochemistry as indicated by larger diel variation and slightly higher mean DO and pH, despite lower kelp growth rates. Differences between kelp forests and offshore areas were not driven by nutrients or phytoplankton. Although kelp had clear effects on biogeochemistry, which were modulated by hydrodynamics, the small magnitude and spatial extent of the effect limits the potential of kelp forests to mitigate acidification and hypoxia. 
    more » « less
  3. Abstract

    Analysis of an established geocoronal Hαdata set indicates a seasonal trend in observed dusk‐to‐dawn intensity variation, consistent with a diurnal variation in the underlying thermospheric hydrogen density. Observations were obtained at Pine Bluff Observatory, WI, from 2000 to 2001 using a high spectral resolution (R∼80,000) Fabry‐Perot annular summing spectrometer. This dusk‐to‐dawn asymmetry in intensity is highest in winter months with a difference of ∼2.7 Rayleighs and smallest in summer months with a difference of ∼0.5 Rayleighs; observations near equinox show a dusk‐to‐dawn difference in intensity close to ∼1.3 Rayleighs. Comparisons between modeled and observed dusk‐to‐dawn intensity variation show good agreement near the equinoxes. The modeled intensity was generated using the lyao_rt radiative transport code of Bishop (1999,https://doi.org/10.1016/S0022-4073(98)00031-4), employing NRLMSISE‐00 thermospheric hydrogen profiles extended into the exosphere via the evaporative case of the Bishop analytic exosphere. Near the equinoxes and summer solstice, the model tends to agree with observations. Near the winter solstice, the model underestimates the dusk‐to‐dawn asymmetry by 1.5–2 Rayleighs. Overall, modeled Hαintensity generated with NRLMSISE‐00 as the thermospheric input is shown to be consistently lower than observed intensity by a factor of ∼2.

     
    more » « less
  4. Abstract. In late summer 2019 and 2020 bottom waters in southern Cape Cod Bay (CCB) became depleted of dissolved oxygen (DO), with documented benthicmortality in both years. Hypoxic conditions formed in relatively shallow water where the strong seasonal thermocline intersected the sea floor, bothlimiting vertical mixing and concentrating biological oxygen demand (BOD) over a very thin bottom boundary layer. In both 2019 and 2020, anomalouslyhigh sub-surface phytoplankton blooms were observed, and the biomass from these blooms provided the fuel to deplete sub-pycnocline waters of DO. Theincreased chlorophyll fluorescence was accompanied by a corresponding decrease in sub-pycnocline nutrients, suggesting that prior to 2019 physicalconditions were unfavorable for the utilization of these deep nutrients by the late-summer phytoplankton community. It is hypothesized thatsignificant alteration of physical conditions in CCB during late summer, which is the result of regional climate change, has favored the recentincrease in sub-surface phytoplankton production. These changes include rapidly warming waters and significant shifts in summer wind direction, bothof which impact the intensity and vertical distribution of thermal stratification and vertical mixing within the water column. These changes inwater column structure are not only more susceptible to hypoxia but also have significant implications for phytoplankton dynamics, potentiallyallowing for intense late-summer blooms of Karenia mikimotoi, a species new to the area. K. mikimotoi had not been detected in CCBor adjacent waters prior to 2017; however, increasing cell densities have been reported in subsequent years, consistent with a rapidly changingecosystem. 
    more » « less
  5. Abstract

    Relationships between the recrystallized grain size and stress are investigated for experimentally deformed water‐added quartz aggregates. For stresses ≥100 MPa there is a variation in the measured recrystallized grain size for a given stress. This variation correlates with a change in thec‐axis fabric in general shear experiments, where samples with larger recrystallized grain sizes for a given stress have dominantly prism c‐axis fabrics and samples with smaller recrystallized grain sizes for a given stress have dominantly basal c‐axis fabrics. The dislocation creep flow law also changes at conditions where these twoc‐axis fabrics form (Tokle et al., 2019,https://doi.org/10.1016/j.epsl.2018.10.017). Using the wattmeter model (Austin & Evans, 2007,https://doi.org/10.1130/G23244A.1), different piezometric relationships are quantified for samples that develop prism and basal c‐axis fabrics, respectively. The wattmeter model is sensitive to grain growth kinetics; a new grain growth law for quartz is formulated based on reanalysis of microstructures in samples from previous work. The activation enthalpies and water fugacity exponents for our grain growth law and dislocation creep flow laws are the same within error, suggesting the recrystallized grain size versus stress relationships are nearly independent of temperature and water fugacity, consistent with laboratory observations. The wattmeters successfully predict the recrystallized grain size versus stress relationships of all quartzite samples from experiments with added water. These results support the use and extrapolation of the wattmeter model for both experimental and geologic conditions to investigate the stress state and grain size evolution of quartz rich rocks.

     
    more » « less