skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High strength, acid‐resistant composites from canola, sunflower, or linseed oils: Influence of triglyceride unsaturation on material properties
Abstract Here are reported composites made by crosslinking unsaturated units in canola, sunflower, or linseed oil with sulfur to yieldCanS,SunS, andLinS, respectively. These plant oils were selected because the average number of crosslinkable unsaturated units per triglyceride vary from 1.3 for canola to 1.5 for sunflower and 1.8 for linseed oil. The remeltable composites show compressive strengths that increase with increasing unsaturation number fromCanS(9.3 MPa) toSunS(17.9 MPa) toLinS(22.9 MPa). These values forSunSandLinSare competitive when compared with the value of 17 MPa required for residential building using traditional Portland cement. The plant oil composites are recyclable over many cycles and can retain up to 100% of strength after 24 hr in oxidizing acid under conditions where Portland cement is dissolved in under 30 min. Infusion of the composites into premade cement blocks affords them with significantly improved acid resistance as well. This work thus provides a simple, nearly 100% atom economical route to convert plant oils and waste sulfur to composites having enhanced performance over commercial structural materials.  more » « less
Award ID(s):
1708844
PAR ID:
10456416
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
58
Issue:
16
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2259-2266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Low cost and high durability have made Portland cement the most widely‐used building material, but benefits are offset by environmental harm of cement production contributing 8–10% of total anthropogenic CO2gas emissions. High sulfur‐content materials (HSMs) are an alternative that can perform the binding roles as cements with a smaller carbon footprint, and possibly superior chemical, physical, and mechanical properties. Inverse vulcanization of 90 wt% sulfur with 10 wt% canola oil or sunflower oil to yield CanS or SunS, respectively. Notably, these HSMs prepared at temperatures ≤180 °C compared to >1200 °C hours for Portland cement CanS was combined with 5 wt% fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK) to give composites CanS‐FA, CanS‐SF, CanS‐GGBFS, and CanS‐MK, respectively. The analogous protocol with SunS likewise yielded SunS‐FA, SunS‐SF, SunS‐GGBFS, and SunS‐MK. Each of these HSMs exhibit high compressive mechanical strength, low water uptake values, and exceptional resistance to acid‐induced corrosion. All of the composites also exhibit superior compressive strength retention after exposure to acidic solutions, conditions under which Portland cement undergoes dissolution. The polymer cement‐pozzolan composites reported herein may thus serve as greener alternatives to traditional Portland cement in some applications. 
    more » « less
  2. Abstract Rancid animal fats unsuitable for human or animal food production represent low‐value and abundant, yet underexploited organic chemical precursors. The current work describes a strategy to synthesize high sulfur‐content materials (HSMs) that directly utilizes a blend of partially hydrolyzed chicken fat and plant oils as the organic comonomers, following up on analogous reactions using brown grease in place of chicken fat. The reaction of sulfur and chicken fat with either canola or sunflower oil yielded crosslinked polymer composites CFSxor GFSx, respectively (x = wt% sulfur, varied from 85%–90%). The composites exhibited compressive strengths of 24.7–31.7 MPa, and flexural strengths of 4.1–5.7 MPa, exceeding the value of established construction materials like ordinary Portland cement (compressive strength ≥17 MPa required for residential building, flexural strength 2–5 MPa). The composites also exhibited thermal stability up to 215–224 °C. The simple single‐step protocol described herein represents a way to upcycle an affordable and previously unexploited animal fat resource to form structural composites via the atom economical inverse vulcanization mechanism. 
    more » « less
  3. High sulfur-content materials (HSMs) formed via inverse vulcanization of elemental sulfur with animal fats and/or plant oils can exhibit remarkable mechanical strength and chemical resistance, sometimes superior to commercial building products. Adding pozzolan fine materials—fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK)—can further improve HSM mechanical properties and stability. Herein, we detail nine materials comprised of rancidified chicken fat, elemental sulfur, and canola or sunflower oil (to yield CFS or GFS, respectively) and, with or without FA, SF, GGBFS, or MK. The base HSMs, CFS90 or GFS90, contained 90 wt% sulfur, 5 wt% chicken fat, and 5 wt% canola or sunflower oil, respectively. For each HSM/fine combination, the resulting material was prepared using a 95:5 mass input ratio of HSM/fine. No material exhibited water uptake >0.2 wt% after immersion in water for 24 h, significantly lower than the 28 wt% observed with ordinary Portland cement (OPC). Impressively, CFS90, GFS90, and all HSM/fine combinations exhibited compressive strength values 15% to 55% greater than OPC. After immersion in 0.5 M H2SO4, CFS90, GFS90, and its derivatives retained 90% to 171% of the initial strength of OPC, whereas OPC disintegrated under these conditions. CFS90, GFS90, and its derivatives collectively show promise as sustainable materials and materials with superior performance versus concrete. 
    more » « less
  4. Abstract A three‐stage route to chemically upcycle post‐consumer poly(ethylene terephthalate) (PET) to produce high compressive strength composites is reported. This procedure involves initial glycolysis with diethylene glycol to produce a mixture (GPET) comprising oligomers of 2–7 terephthalate units followed by trans/esterification of GPET with fatty acid chains supplied by brown grease, an agricultural by‐product of animal fat of relatively low nutritional or fuel value. This process yields PGB comprising a mixture of mono‐terephthalate ester derivatives. The olefin units provided by unsaturated fatty acid chains in brown grease were crosslinked by an inverse vulcanization reaction with elemental sulfur to give composites GBSx(x = wt% S, varied from 80%–90%). The compressive strengths of GBS80(27.5 ± 2.6 MPa) and GBS90(19.2 ± 0.8 MPa) exceed the compressive strength required of ordinary Portland cement (17 MPa) for its use in residential building foundations. The current route represents a way to repurpose waste plastic, energy sector by‐product sulfur, and agricultural by‐product brown grease to give high strength composites with mechanical properties suggesting their possible use to replace less sustainably sourced legacy structural materials. 
    more » « less
  5. Abstract Poly(methyl methacrylate) (PMMA) is an important commodity polymer having a wide range of applications. Currently, only about 10% of PMMA is recycled. Herein, a simple two‐stage process for the chemical upcycling of PMMA is discussed. In this method PMMA is modified by transesterification with a bio‐derived, olefin‐bearing terpenoid, geraniol. In the second stage, olefin‐derivatized PMMA is reacted with sulfur to form a network composite by an inverse vulcanization mechanism. Inverse vulcanization of PGMA with elemental sulfur (90 wt.%) yielded the durable compositePGMA‐S. This composite was characterized by NMR spectrometry, IR spectroscopy, elemental analysis, thermogravimetric analysis, and differential scanning calorimetry. Composite water uptake, compressional strength analysis, flexural strength analysis, tensile strength analysis, and thermal recyclability are presented with comparison to current commercial structural materials.PGMA‐Sexhibits a similar compressive strength (17.5 MPa) to that of Portland cement.PGMA‐Sdemonstrates an impressive flexural strength of 4.76 MPa which exceeds the flexural strength (>3 MPa) of many commercial ordinary Portland cements. This study provides a way to upcycle waste PMMA through combination with a naturally‐occurring olefin and industrial waste sulfur to yield composites having mechanical properties competitive with ecologically detrimental legacy building materials. 
    more » « less