skip to main content


Title: Printable Organic‐Inorganic Nanoscale Multilayer Gate Dielectrics for Thin‐Film Transistors Enabled by a Polymeric Organic Interlayer
Abstract

Here, a new approach to the layer‐by‐layer solution‐processed fabrication of organic/inorganic hybrid self‐assembled nanodielectrics (SANDs) is reported and it is demonstrated that these ultrathin gate dielectric films can be printed. The organic SAND component, named P‐PAE, consists of polarizable π‐electron phosphonic acid‐based units bound to a polymeric backbone. Thus, the new polymeric SAND (PSAND) can be fabricated either by spin‐coating or blade‐coating in air, by alternating P‐PAE, a capping reagent layer, and an ultrathin ZrOx layer. The new PSANDs thickness vary from 6 to 15 nm depending on the number of organic‐ZrOx bilayers, exhibit tunable film thickness, well‐defined nanostructures, large electrical capacitance (up to 558 nF cm−2), and good insulating properties (leakage current densities as low as 10−6A cm−2). Organic thin‐film transistors that are fabricated with representative p‐/n‐type organic molecular/polymeric semiconducting materials, function well at low voltages (<3.0 V). Furthermore, flexible TFTs fabricated with PSAND exhibit excellent mechanical flexibility and good stress stability, offering a promising route to low operating voltage flexible electronics. Finally, printable PSANDs are also demonstrated and afford TFTs with electrical properties comparable to those achieved with the spin‐coated PSAND‐based devices.

 
more » « less
NSF-PAR ID:
10456418
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
40
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    2D organic conjugated polymer nanofilm has shown promising potential applications in organic solar cells and flexible electronics due to its tunable electronic and mechanical properties. However, its multifunctionality is largely hindered by weak mechanical performances. Here, a new strategy of harnessing buckling‐driven delamination is proposed for achieving highly stretchable, free‐standing organic nanosheets with largely improved multifunctionality in mechanical, electrical, and wetting properties. A model system of organic conjugated polymeric (P3BT/C60) nanosheets on prestrained elastomers is fabricated through both spin‐coating and transfer‐printing methods. It is found that the free‐standing nanosheet exhibits both superior mechanical and electrical properties with two times higher in fracture strength, and one order of magnitude higher in electrical conductivity than the spin‐coated nanofilm. Compared to wrinkled spin‐coated nanofilms with orthogonal cracks, the crack‐free, buckle‐delaminated free‐standing nanosheet shows not only stable electrical properties with high stretchability but also a large enhancement in both wetting anisotropy and parallel contact angle due to its higher‐aspect‐ratio features. Lastly, measuring the nanofilm's fracture strength and interfacial toughness from the metrology of cracking and buckle‐delaminated micropatterns is demonstrated. It is shown that such metrology‐based approaches can be applied to various nanofilm–substrate systems for thin film and interfacial mechanical properties measurement.

     
    more » « less
  2. Abstract

    The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs.

     
    more » « less
  3. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  4. Abstract

    Solution‐processable organic semiconductors can serve as the basis for new products including rollable displays, tattoo‐like smart bandages for real‐time health monitoring, and conformable electronics integrated into clothing or even implanted in the human body. For such exciting commercial applications to become a reality, good device performance and uniformity over large areas are necessary. The design of new materials has progressed at an astonishing pace, but accessing their intrinsic, efficient electrical properties in large‐area flexible device arrays is difficult. The development of protocols that allow integration with industrial‐scale processing for high‐throughput manufacturing, without the need to compromise on performance, is the key for transitioning these materials to real‐life applications. In this work, large‐area arrays of organic thin‐film transistors obtained by spray‐coating the high‐mobility polymer indacenodithiophene‐co‐benzothiadiazole (IDTBT) are demonstrated. A maximum charge carrier mobility of 2.3 cm2V−1s−1, with a very narrow performance distribution, is obtained over surface areas of 10 cm × 10 cm. The devices retain their electrical properties when bent multiple times and at different curvatures. In addition, large arrays of highly sensitive (0.25% change in mobility for 1% humidity variation), reusable, near‐identical humidity sensors are produced in a one‐step fabrication and calibrated from 0% to 94% relative humidity.

     
    more » « less
  5. Abstract

    New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.

     
    more » « less