skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Robustness of trait connections across environmental gradients and growth forms
Abstract Aim

Plant trait databases often contain traits that are correlated, but for whom direct (undirected statistical dependency) and indirect (mediated by other traits) connections may be confounded. The confounding of correlation and connection hinders our understanding of plant strategies, and how these vary among growth forms and climate zones. We identified the direct and indirect connections across plant traits relevant to competition, resource acquisition and reproductive strategies using a global database and explored whether connections within and between traits from different tissue types vary across climates and growth forms.

Location

Global.

Major taxa studied

Plants.

Time period

Present.

Methods

We used probabilistic graphical models and a database of 10 plant traits (leaf area, specific leaf area, mass‐ and area‐based leaf nitrogen and phosphorous content, leaf life span, plant height, stem specific density and seed mass) with 16,281 records to describe direct and indirect connections across woody and non‐woody plants across tropical, temperate, arid, cold and polar regions.

Results

Trait networks based on direct connections are sparser than those based on correlations. Land plants had high connectivity across traits within and between tissue types; leaf life span and stem specific density shared direct connections with all other traits. For both growth forms, two groups of traits form modules of more highly connected traits; one related to resource acquisition, the other to plant architecture and reproduction. Woody species had higher trait network modularity in polar compared to temperate and tropical climates, while non‐woody species did not show significant differences in modularity across climate regions.

Main conclusions

Plant traits are highly connected both within and across tissue types, yet traits segregate into persistent modules of traits. Variation in the modularity of trait networks suggests that trait connectivity is shaped by prevailing environmental conditions and demonstrates that plants of different growth forms use alternative strategies to cope with local conditions.

 
more » « less
PAR ID:
10456456
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ; « less
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
28
Issue:
12
ISSN:
1466-822X
Page Range / eLocation ID:
p. 1806-1826
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Despite several recent efforts to map plant traits and to identify their climatic drivers, there are still major gaps. Global trait patterns for major functional groups, in particular, the differences between woody and herbaceous plants, have yet to be identified. Here, we take advantage of big data efforts to compile plant species occurrence and trait data to analyse the spatial patterns of assemblage means and variances of key plant traits. We tested whether these patterns and their climatic drivers are similar for woody and herbaceous plants.

    Location

    New World (North and South America).

    Methods

    Using the largest currently available database of plant occurrences, we provide maps of 200 × 200 km grid‐cell trait means and variances for both woody and herbaceous species and identify environmental drivers related to these patterns. We focus on six plant traits: maximum plant height, specific leaf area, seed mass, wood density, leaf nitrogen concentration and leaf phosphorus concentration.

    Results

    For woody assemblages, we found a strong climate signal for both means and variances of most of the studied traits, consistent with strong environmental filtering. In contrast, for herbaceous assemblages, spatial patterns of trait means and variances were more variable, the climate signal on trait means was often different and weaker.

    Main conclusion

    Trait variations for woody versus herbaceous assemblages appear to reflect alternative strategies and differing environmental constraints. Given that most large‐scale trait studies are based on woody species, the strikingly different biogeographic patterns of herbaceous traits suggest that a more synthetic framework is needed that addresses how suites of traits within and across broad functional groups respond to climate.

     
    more » « less
  2. Premise

    Clouds have profound consequences for ecosystem structure and function. Yet, the direct monitoring of clouds and their effects on biota is challenging especially in remote and topographically complex tropical cloud forests. We argue that known relationships between climate and the taxonomic and functional composition of plant communities may provide a fingerprint of cloud base height, thus providing a rapid and cost‐effective assessment in remote tropical cloud forests.

    Methods

    To detect cloud base height, we compared species turnover and functional trait values among herbaceous and woody plant communities in an ecosystem dominated by cloud formation. We measured soil and air temperature, soil nutrient concentrations, and extracellular enzyme activity. We hypothesized that woody and herbaceous plants would provide signatures of cloud base height, as evidenced by abrupt shifts in both taxonomic composition and plant function.

    Results

    We demonstrated abrupt changes in taxonomic composition and the community‐ weighted mean of a key functional trait, specific leaf area, across elevation for both woody and herbaceous species, consistent with our predictions. However, abrupt taxonomic and functional changes occurred 100 m higher in elevation for herbaceous plants compared to woody ones. Soil temperature abruptly decreased where herbaceous taxonomic and functional turnover was high. Other environmental variables including soil biogeochemistry did not explain the abrupt change observed for woody plant communities.

    Conclusions

    We provide evidence that a trait‐based approach can be used to estimate cloud base height. We outline how rises in cloud base height and differential environmental requirements between growth forms can be distinguished using this approach.

     
    more » « less
  3. Abstract

    Changes in climate and land management over the last half‐century have favoured woody plants native to grasslands and led to the rapid expansion of woody species. Despite this being a global phenomenon, it is unclear why some woody species have rapidly expanded while others have not. We assessed whether the most abundant woody encroaching species in tallgrass prairie have common growth forms and physiology or unique traits that differentiate their resource‐use strategies.

    We characterized the abundance, above‐ground carbon allocation, and leaf‐level physiological and structural traits of seven woody encroaching species in tallgrass prairie that span an order of magnitude in abundance. To identify species‐specific increases in abundance, we used a 34‐year species composition dataset at Konza Prairie Biological Station (Central Great Plains, USA). We then compared biomass allocation and leaf‐level traits to determine differences in carbon and water use strategies among species.

    While all focal species increased in abundance over time, encroachment in this system is primarily driven by three species:Cornus drummondii,Prunus americanaandRhus glabra. The most dominant species,Cornus drummondii, had the most extreme values for several traits, including the lowest leaf:stem mass ratios, lowest photosynthetic capacity and highest turgor loss point.

    Two of the most abundant species,Cornus drummondiiandRhus glabra, had opposing growth forms and resource‐use strategies. These species had significantly different above‐ground carbon allocation, leaf‐level drought tolerance and photosynthetic capacity. There were surprisingly few interspecific differences in specific leaf area and leaf dry matter content, suggesting these traits were poor predictors of species‐level encroachment.

    Synthesis. Woody encroaching species in tallgrass prairie encompass a spectrum of growth forms and leaf physiology. Two of the most abundant woody species fell at opposite ends of this spectrum. Our results suggest niche differences among a community of woody species facilitate the rapid encroachment by a few species. This study shows that woody encroaching species do not conform to a ‘one‐size‐fits‐all’ strategy, and a diversity of growth forms and physiological strategies may make it more challenging to reach management goals that aim to conserve or restore grassland communities.

     
    more » « less
  4. A fundamental assumption of functional ecology is that functional traits are related to interspecific variation in performance. However, the relationship between functional traits and performance is often weak or uncertain, especially for plants. A potential explanation for this inconsistency is that the relationship between functional traits and vital rates (e.g., growth and mortality) is dependent on local environmental conditions, which would lead to variation in trait-rate relationships across environmental gradients. In this study, we examined trait-rate relationships for six functional traits (seed mass, wood density, maximum height, leaf mass per area, leaf area, and leaf dry matter content) using long-term data on seedling growth and survival of woody plant species from eight forest sites spanning a pronounced precipitation and soil phosphorus gradient in central Panama. For all traits considered except for leaf mass per area-mortality, leaf mass per area-growth, and leaf area-mortality relationships, we found widespread variation in the strength of trait-rate relationships across sites. For some traits, trait-rate relationships showed no overall trend but displayed wide site-to-site variation. In a small subset of cases, variation in trait-rate relationships was explained by soil phosphorus availability. Our results demonstrate that environmental gradients have the potential to influence how functional traits are related to growth and mortality rates, though much variation remains to be explained. Accounting for site-to-site variation may help resolve a fundamental issue in trait-based ecology – that traits are often weakly related to performance – and improve the utility of functional traits for explaining key ecological and evolutionary processes. 
    more » « less
  5. Abstract

    Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.

     
    more » « less