skip to main content


Title: Upper Mantle Earth Structure in Africa From Full‐Wave Ambient Noise Tomography
Abstract

Our understanding of the tectonic development of the African continent and the interplay between its geological provinces is hindered by unevenly distributed seismic instrumentation. In order to better understand the continent, we used long‐period ambient noise full‐waveform tomography on data collected from 186 broadband seismic stations throughout Africa and surrounding regions to better image the upper mantle structure. We extracted empirical Green's functions from ambient seismic noise using a frequency‐time normalization method and retrieved coherent signal at periods of 7–340 s. We simulated wave propagation through a heterogeneous Earth using a spherical finite‐difference approach to obtain synthetic waveforms, measured the misfit as phase delay between the data and synthetics, calculated numerical sensitivity kernels using the scattering integral approach, and iteratively inverted for structure. The resulting images of isotropic, shear wave speed for the continent reveal segmented, low‐velocity upper mantle beneath the highly magmatic northern and eastern sections of the East African Rift System (EARS). In the southern and western sections, high‐velocity upper mantle dominates, and distinct, low‐velocity anomalies are restricted to regions of current volcanism. At deeper depths, the southern and western EARS transition to low velocities. In addition to the EARS, several low‐velocity anomalies are scattered through the shallow upper mantle beneath Angola and North Africa, and some of these low‐velocity anomalies may be connected to a deeper feature. Distinct upper mantle high‐velocity anomalies are imaged throughout the continent and suggest multiple cratonic roots within the Congo region and possible cratonic roots within the Sahara Metacraton.

 
more » « less
Award ID(s):
1516680
NSF-PAR ID:
10456461
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
20
Issue:
1
ISSN:
1525-2027
Page Range / eLocation ID:
p. 120-147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The origin of the Cameroon Volcanic Line (CVL), which is difficult to explain with traditional plate tectonics and mantle convection models because the volcanism does not display clear age progression, remains widely debated. Existing seismic tomography models show anomalously slow structure beneath the CVL, which some have interpreted to reflect upper mantle convective processes, possibly associated with edge‐driven flow related to the neighboring Congo Craton. However, mid‐ and lower mantle depths are generally not well resolved in these models, making it difficult to determine the extent of the anomalous CVL structure. Here, we present a new P‐wave velocity model for the African mantle, developed with the largest collection of travel‐time residuals recorded across the continent to date and an adaptive model parameterization. Our extensive data set and inversion method yield high resolution images of the mantle structure beneath western Africa, particularly at the critical mid‐ and lower mantle depths needed to further evaluate processes associated with the formation of the CVL. Our new model provides strong evidence for a connection between the African Large Low Velocity Province, centered in the lower mantle beneath southern Africa, and the continental portion of the CVL. We suggest that seismically slow material generated near the core‐mantle boundary beneath southern Africa moves northwestward under the Congo Craton. At the northern edge of the craton, the hot, buoyant material rises through the upper mantle, causing the CVL volcanism. Consequently, CVL magmatism can be linked to large‐scale mantle processes rooted in the deep mantle.

     
    more » « less
  2. Abstract

    We present a 3D shear‐wave velocity model of the southern African upper mantle developed using 30–200 s period Rayleigh waves recorded on regional seismic networks spanning the subcontinent. The model shows high velocities (∼4.7–4.8 km/s) at depths of 50–250 km beneath the Archean nucleus and several surrounding Paleoproterozoic and Mesoproterozoic terranes, placing the margin of the greater Kalahari Craton along the southern boundary of the Damara Belt and the eastern boundaries of the Gariep and Namaqua‐Natal belts. At depths ≥250 km, there is little difference in velocities beneath the craton and off‐craton regions, suggesting that the cratonic lithosphere extends to depths of about 200–250 km. Upper mantle velocities beneath uplifted areas of southern Africa are higher than the global average and significantly higher than beneath eastern Africa, indicating there that is little thermal modification of the upper mantle present today beneath the Southern African Plateau.

     
    more » « less
  3. Abstract

    We report newPandSwave velocity models of the upper mantle beneath southern Africa using data recorded on seismic stations spanning the entire subcontinent. Beneath most of the Damara Belt, including the Okavango Rift, our models show lower than average velocities (−0.8% Vp; −1.2% Vs) with an abrupt increase in velocities along the terrane's southern margin. We attribute the lower than average velocities to thinner lithosphere (~130 km thick) compared to thicker lithosphere (~200 km thick) immediately to the south under the Kalahari Craton. Beneath the Etendeka Flood Basalt Province, higher than average velocities (0.25% Vp; 0.75% Vs) indicate thicker and/or compositionally distinct lithosphere compared to other parts of the Damara Belt. In the Rehoboth Province, higher than average velocities (0.3% Vp; 0.5% Vs) suggest the presence of a microcraton, as do higher than average velocities (1.0% Vp; 1.5% Vs) under the Southern Irumide Belt. Lower than average velocities (−0.4% Vp; −0.7% Vs) beneath the Bushveld Complex and parts of the Mgondi and Okwa terranes are consistent with previous studies, which attributed them to compositionally modified lithosphere resulting from Precambrian magmatic events. There is little evidence for thermally modified upper mantle beneath any of these terranes which could provide a source of uplift for the Southern African Plateau. In contrast, beneath parts of the Irumide Belt in southern and central Zambia and the Mozambique Belt in central Mozambique, deep‐seated low velocity anomalies (−0.7% Vp; −0.8% Vs) can be attributed to upper mantle extensions of the African superplume structure.

     
    more » « less
  4. Abstract

    To explore 3‐D seismic velocity and radial anisotropy structures of the upper mantle and mantle transition zone beneath the Malawi and Luangwa rift zones of the East African Rift System, we conduct the first study ofPwave anisotropic tomography using data recorded at 75 seismic stations including 34 stations that we installed along two profiles as part of the Seismic Arrays for African Rift Initiation experiment. Both rift zones are revealed to have normal or slightly low velocity anomalies in the lithosphere and upper asthenosphere. The surrounding cratonic lithosphere is characterized by high‐velocity anomalies with amplitudes ranging from +1.0% to +2.0%. Negative radial anisotropy, which is indicative of upwelling or downwelling in the mantle, is mainly distributed beneath the rift zones, whereas the other areas mostly feature positive radial anisotropy that implies horizontal flow. A prominent circular low‐velocity anomaly exists in the top 200 km of the upper mantle beneath the Rungwe Volcanic Province without obvious connections to the lower mantle. Combining the present findings with previous geodetic and tomography results, we interpret the Rungwe Volcanic Province magmatism as primarily due to decompression melting in response to lithospheric extension induced by the counterclockwise and clockwise rotations of the Victoria and Rovuma microplates, respectively, with respect to the Nubian plate. Isolated mantle upwelling, which is indicated by scattered low‐velocity anomalies and negative radial anisotropy beneath the Malawi rift zone, may contribute to the incipient rifting.

     
    more » « less
  5. Abstract

    We conduct a joint inversion of teleseismic receiver functions and Rayleigh wave phase velocity dispersion from both ambient noise and earthquakes using data from 79 seismic stations in southern Africa, which is home to some of the world's oldest cratons and orogenic belts. The area has experienced two of the largest igneous activities in the world (the Okavango dyke swarm and Bushveld mafic intrusion) and thus is an ideal locale for investigating continental formation and evolution. The resulting 3‐D shear wave velocities for the depth range of 0–100 km and crustal thickness measurements show a clear spatial correspondence with known geological features observed on the surface. Higher than normal mantle velocities found beneath the southern part of the Kaapvaal craton are consistent with the basalt removal model for the formation of cratonic lithosphere. In contrast, the Bushveld complex situated within the northern part of the craton is characterized by a thicker crust and higher crustalVp/Vsbut lower mantle velocities, which are indicative of crustal underplating of mafic materials and lithospheric refertilization by the world's largest layered mafic igneous intrusion. The thickened crust and relatively low elevation observed in the Limpopo belt, which is a late Archean collisional zone between the Kaapvaal and Zimbabwe cratons, can be explained by eclogitization of the basaltic lower crust. The study also finds evidence for the presence of a stalled segment of oceanic lithosphere beneath the southern margin of the Proterozoic Namaqua‐Natal mobile belt.

     
    more » « less