skip to main content


Title: A Site‐Specific Integration Reporter System That Enables Rapid Evaluation of CRISPR/Cas9‐Mediated Genome Editing Strategies in CHO Cells
Abstract

Targeted gene knockout and site‐specific integration (SSI) are powerful genome editing techniques to improve the development of industrially relevant Chinese hamster ovary (CHO) cell lines. However, past efforts to perform SSI in CHO cells are characterized by low efficiencies. Moreover, numerous strategies proposed to boost SSI efficiency in mammalian cell types have yet to be evaluated head to head or in combination to appreciably boost efficiencies in CHO. To enable systematic and rapid optimization of genome editing methods, the SSIGNAL (site‐specificintegration andgenomealteration) reporter system is developed. This tool can analyze CRISPR (clustered regularly interspaced palindromic repeats)/Cas9 (CRISPR‐associated protein 9)‐mediated disruption activity alone or in conjunction with SSI efficiency. The reporter system uses green and red dual‐fluorescence signals to indicate genotype states within four days following transfection, facilitating rapid data acquisition via standard flow cytometry instrumentation. In addition to describing the design and development of the system, two of its applications are demonstrated by first comparing transfection conditions to maximize CRISPR/Cas9 activity and subsequently assessing the efficiency of several promising SSI strategies. Due to its sensitivity and versatility, the SSIGNAL reporter system may serve as a tool to advance genome editing technology.

 
more » « less
NSF-PAR ID:
10456534
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology Journal
Volume:
15
Issue:
8
ISSN:
1860-6768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Efforts to leverage clustered regularly interspaced short palindromic repeats/CRISPR‐associated protein 9 (CRISPR/Cas9) for targeted genomic modifications in mammalian cells are limited by low efficiencies and heterogeneous outcomes. To aid method optimization, we developed an all‐in‐one reporter system, including a novel superfolder orange fluorescent protein (sfOrange), to simultaneously quantify gene disruption, site‐specific integration (SSI), and random integration (RI). SSI strategies that utilize different donor plasmid formats and Cas9 nuclease variants were evaluated for targeting accuracy and efficiency in Chinese hamster ovary cells. Double‐cut and double‐nick donor formats significantly improved targeting accuracy by 2.3–8.3‐fold and 19–22‐fold, respectively, compared to standard circular donors. Notably, Cas9‐mediated donor linearization was associated with increased RI events, whereas donor nicking minimized RI without sacrificing SSI efficiency and avoided low‐fidelity outcomes. A screen of 10 molecules that modulate the major mammalian DNA repair pathways identified two inhibitors that further enhance targeting accuracy and efficiency to achieve SSI in 25% of transfected cells without selection. The optimized methods integrated transgene expression cassettes with 96% efficiency at a single locus and with 53%–55% efficiency at two loci simultaneously in selected clones. The CRISPR‐based tools and methods developed here could inform the use of CRISPR/Cas9 in mammalian cell lines, accelerate mammalian cell line engineering, and support advanced recombinant protein production applications.

     
    more » « less
  2. Abstract

    CRISPR/Cas9 gene editing is effective in manipulating genetic loci in mammalian cell cultures and whole fish but efficient platforms applicable to fish cell lines are currently limited. Our initial attempts to employ this technology in fish cell lines using heterologous promoters or a ribonucleoprotein approach failed to indicate genomic alteration at targeted sites in a tilapia brain cell line (OmB). For potential use in a DNA vector approach, endogenous tilapia beta Actin (OmBAct), EF1 alpha (OmEF1a), and U6 (TU6) promoters were isolated. The strongest candidate promoter determined by EGFP reporter assay, OmEF1a, was used to drive constitutive Cas9 expression in a modified OmB cell line (Cas9-OmB1). Cas9-OmB1 cell transfection with vectors expressing gRNAs driven by the TU6 promoter achieved mutational efficiencies as high as 81% following hygromycin selection. Mutations were not detected using human and zebrafish U6 promoters demonstrating the phylogenetic proximity of U6 promoters as critical when used for gRNA expression. Sequence alteration to TU6 improved mutation rate and cloning efficiency. In conclusion, we report new tools for ectopic expression and a highly efficient, economical system for manipulation of genomic loci and evaluation of their causal relationship with adaptive cellular phenotypes by CRISPR/Cas9 gene editing in fish cells.

     
    more » « less
  3. Abstract

    Base‐editing technologies enable the introduction of point mutations at targeted genomic sites in mammalian cells, with higher efficiency and precision than traditional genome‐editing methods that use DNA double‐strand breaks, such as zinc finger nucleases (ZFNs), transcription‐activator‐like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR‐associated protein 9 (CRISPR‐Cas9) system. This allows the generation of single‐nucleotide‐variant isogenic cell lines (i.e., cell lines whose genomic sequences differ from each other only at a single, edited nucleotide) in a more time‐ and resource‐effective manner. These single‐nucleotide‐variant clonal cell lines represent a powerful tool with which to assess the functional role of genetic variants in a native cellular context. Base editing can therefore facilitate genotype‐to‐phenotype studies in a controlled laboratory setting, with applications in both basic research and clinical applications. Here, we provide optimized protocols (including experimental design, methods, and analyses) to design base‐editing constructs, transfect adherent cells, quantify base‐editing efficiencies in bulk, and generate single‐nucleotide‐variant clonal cell lines. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Design and production of plasmids for base‐editing experiments

    Basic Protocol 2: Transfection of adherent cells and harvesting of genomic DNA

    Basic Protocol 3: Genotyping of harvested cells using Sanger sequencing

    Alternate Protocol 1: Next‐generation sequencing to quantify base editing

    Basic Protocol 4: Single‐cell isolation of base‐edited cells using FACS

    Alternate Protocol 2: Single‐cell isolation of base‐edited cells using dilution plating

    Basic Protocol 5: Clonal expansion to generate isogenic cell lines and genotyping of clones

     
    more » « less
  4. Summary

    CRISPR‐Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we exploreFaecalibaculum rodentiumCas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5′‐NNTA‐3′ PAM, targeting more abundant palindromic TA sites in plant genomes than the 5′‐NGG‐3′ PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5′‐NNTA‐3′ PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR‐Cas9 system. FrCas9 induces high‐efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2‐FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2‐FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9‐derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C‐to‐T and A‐to‐G base edits in rice plants. Whole‐genome sequencing‐based off‐target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2‐FrCas9 in plants, however, causes detectable guide RNA‐independent off‐target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR‐FrCas9 system for targeted mutagenesis, large deletions, C‐to‐T base editing, and A‐to‐G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR‐FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.

     
    more » « less
  5. Greenstein, D (Ed.)
    Abstract The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion. 
    more » « less