skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preferential attachment with reciprocity: properties and estimation
Abstract Reciprocity in social networks is a measure of information exchange between two individuals, and indicates interaction patterns between pairs of users. A recent study finds that the reciprocity coefficient of a classical directed preferential attachment (PA) model does not match empirical evidence. Towards remedying this deficiency, we extend the classical three-scenario directed PA model by adding a parameter that controls the probability of creating a reciprocal edge. This proposed model also allows edge creation between two existing nodes, making it a realistic candidate for fitting to datasets. We provide and compare two estimation procedures for fitting the new reciprocity model and demonstrate the methods on simulated and real datasets. One estimation method requires careful analysis of the heavy tail properties of the model. The fitted models provide a good match with the empirical tail distributions of both in- and out-degrees but other mismatched diagnostics suggest that further generalization of the model is warranted.  more » « less
Award ID(s):
2210735
PAR ID:
10456548
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Complex Networks
Volume:
11
Issue:
5
ISSN:
2051-1329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reciprocity, or the stochastic tendency for actors to form mutual relationships, is an essential characteristic of directed network data. Existing latent space approaches to modelling directed networks are severely limited by the assumption that reciprocity is homogeneous across the network. In this work, we introduce a new latent space model for directed networks that can model heterogeneous reciprocity patterns that arise from the actors' latent distances. Furthermore, existing conditionally edge‐independent latent space models are nested within the proposed model class, which allows for meaningful model comparisons. We introduce a Bayesian inference procedure to infer the model parameters using Hamiltonian Monte Carlo. Lastly, we use the proposed method to infer different reciprocity patterns in an advice network among lawyers, an information‐sharing network between employees at a manufacturing company and a friendship network between high school students. 
    more » « less
  2. Reciprocity, or the tendency of individuals to mirror behavior, is a key measure that de- scribes information exchange in a social network. Users in social networks tend to engage in different levels of reciprocal behavior. Differences in such behavior may indicate the existence of communities that reciprocate links at varying rates. In this paper, we de- velop methodology to model the diverse reciprocal behavior in growing social networks. In particular, we present a preferential attachment model with heterogeneous reciprocity that imitates the attraction users have for popular users, plus the heterogeneous nature by which they reciprocate links. We compare Bayesian and frequentist model fitting techniques for large networks, as well as computationally efficient variational alternatives. Cases where the number of communities is known and unknown are both considered. We apply the presented methods to the analysis of Facebook and Reddit networks where users have non- uniform reciprocal behavior patterns. The fitted model captures the heavy-tailed nature of the empirical degree distributions in the datasets and identifies multiple groups of users that differ in their tendency to reply to and receive responses to wallposts and comments. 
    more » « less
  3. Abstract Preferential attachment, homophily, and their consequences such as scale-free (i.e. power-law) degree distributions, the glass ceiling effect (the unseen, yet unbreakable barrier that keeps minorities and women from rising to the upper rungs of the corporate ladder, regardless of their qualifications or achievements) and perception bias are well-studied in undirected networks. However, such consequences and the factors that lead to their emergence in directed networks (e.g. author–citation graphs, Twitter) are yet to be coherently explained in an intuitive, theoretically tractable manner using a single dynamical model. To this end, we present a theoretical and numerical analysis of the novel Directed Mixed Preferential Attachment model in order to explain the emergence of scale-free degree distributions and the glass ceiling effect in directed networks with two groups (minority and majority). Specifically, we first derive closed-form expressions for the power-law exponents of the in-degree and out-degree distributions of each of the two groups and then compare the derived exponents with each other to obtain useful insights. These insights include answers to questions such as: when does the minority group have an out-degree (or in-degree) distribution with a heavier tail compared to the majority group? what factors cause the tail of the out-degree distribution of a group to be heavier than the tail of its own in-degree distribution? what effect does frequent addition of edges between existing nodes have on the in-degree and out-degree distributions of the majority and minority groups? Answers to these questions shed light on the interplay between structure (i.e. the in-degree and out-degree distributions of the two groups) and dynamics (characterized collectively by the homophily, preferential attachment, group sizes and growth dynamics) of various real-world directed networks. We also provide a novel definition of the glass ceiling faced by a group via the number of individuals with large out-degree (i.e. those with many followers) normalized by the number of individuals with large in-degree (i.e. those who follow many others) and then use it to characterize the conditions that cause the glass ceiling effect to emerge in a directed network. Our analytical results are supported by detailed numerical experiments. The DMPA model and its theoretical and numerical analysis provided in this article are useful for analysing various phenomena on directed networks in fields such as network science and computational social science. 
    more » « less
  4. Abstract Graph matching algorithms attempt to find the best correspondence between the nodes of two networks. These techniques have been used to match individual neurons in nanoscale connectomes—in particular, to find pairings of neurons across hemispheres. However, since graph matching techniques deal with two isolated networks, they have only utilized the ipsilateral (same hemisphere) subgraphs when performing the matching. Here, we present a modification to a state-of-the-art graph matching algorithm that allows it to solve what we call the bisected graph matching problem. This modification allows us to leverage the connections between the brain hemispheres when predicting neuron pairs. Via simulations and experiments on real connectome datasets, we show that this approach improves matching accuracy when sufficient edge correlation is present between the contralateral (between hemisphere) subgraphs. We also show how matching accuracy can be further improved by combining our approach with previously proposed extensions to graph matching, which utilize edge types and previously known neuron pairings. We expect that our proposed method will improve future endeavors to accurately match neurons across hemispheres in connectomes, and be useful in other applications where the bisected graph matching problem arises. 
    more » « less
  5. Abstract Graph matching algorithms attempt to find the best correspondence between the nodes of two networks. These techniques have been used to match individual neurons in nanoscale connectomes – in particular, to find pairings of neurons across hemispheres. However, since graph matching techniques deal with two isolated networks, they have only utilized the ipsilateral (same hemisphere) subgraphs when performing the matching. Here, we present a modification to a state-of-the-art graph matching algorithm which allows it to solve what we call the bisected graph matching problem. This modification allows us to leverage the connections between the brain hemispheres when predicting neuron pairs. Via simulations and experiments on real connectome datasets, we show that this approach improves matching accuracy when sufficient edge correlation is present between the contralateral (between hemisphere) subgraphs. We also show how matching accuracy can be further improved by combining our approach with previously proposed extensions to graph matching, which utilize edge types and previously known neuron pairings. We expect that our proposed method will improve future endeavors to accurately match neurons across hemispheres in connectomes, and be useful in other applications where the bisected graph matching problem arises. 
    more » « less