skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Assessing Microbial Community Patterns During Incipient Soil Formation From Basalt
Abstract

Microbial dynamics drive the biotic machinery of early soil evolution. However, integrated knowledge of microbial community establishment, functional associations, and community assembly processes in incipient soil is lacking. This study presents a novel approach of combining microbial phylogenetic profiling, functional predictions, and community assembly processes to analyze drivers of microbial community establishment in an emerging soil system. Rigorous submeter sampling of a basalt‐soil lysimeter after 2 years of irrigation revealed that microbial community colonization patterns and associated soil parameters were depth dependent. Phylogenetic analysis of 16S rRNA gene sequences indicated the presence of diverse bacterial and archaeal phyla, with high relative abundance of Actinomyceles on the surface and a consistently high abundance ofProteobacteria(Alpha,Beta,Gamma, andDelta) at all depths. Despite depth‐dependent variation in community diversity, predicted functional gene analysis suggested that microbial metabolisms did not differ with depth, thereby suggesting redundancy in functional potential throughout the system. Null modeling revealed that microbial community assembly patterns were predominantly governed by variable selection. The relative influence of variable selection decreased with depth, indicating unique and relatively harsh environmental conditions near the surface and more benign conditions with depth. Additionally, community composition near the center of the domain was influenced by high levels of dispersal, suggesting that spatial processes interact with deterministic selection imposed by the environment. These results suggest that for oligotrophic systems, there are major differences in the length scales of variation between vertical and horizontal dimensions with the vertical dimension dominating variation in physical, chemical, and biological features.

 
more » « less
NSF-PAR ID:
10456648
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
124
Issue:
4
ISSN:
2169-8953
Page Range / eLocation ID:
p. 941-958
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The study of islands has made substantial contributions to the development of evolutionary and ecological theory. However, we know little about microbial community assembly on islands. Using soil microbial data collected from 29 lake islands and nearby mainland, we examined the assembly mechanisms of soil bacterial and fungal communities among and within islands. We found that deterministic processes, especially homogeneous selection, tended to be more important in shaping the assembly of soil bacterial communities among islands, while stochastic processes tended to be more important within islands. Moreover, increasing island area increased the importance of homogeneous selection, but reduced the importance of variable selection, for soil bacterial community assembly within islands. By contrast, stochastic processes tended to dominate soil fungal community assembly both among and within islands, with dispersal limitation playing a more important role within than among islands. Our results highlight the scale‐ and taxon‐dependence of insular soil microbial community assembly, suggesting that spatial scale should be explicitly considered when evaluating the influences of habitat fragmentation on soil microbial communities.

     
    more » « less
  2. Abstract

    The spatial heterogeneity of soil’s microhabitats warrants the study of ecological patterns and community assembly processes in the context of physical disturbance that disrupts the inherent spatial isolation of soil microhabitats and microbial communities. By mixing soil at various frequencies in a 16-week lab incubation, we explored the effects of physical disturbance on soil bacterial richness, community composition, and community assembly processes. We hypothesized that well-mixed soil would harbor a less rich microbial community, with community assembly marked by homogenizing dispersal and homogeneous selection. Using 16S rRNA gene sequencing, we inferred community assembly processes, estimated richness and differential abundance, and calculated compositional dissimilarity. Findings supported our hypotheses, with > 20% decrease in soil bacterial richness in well-mixed soil. Soil mixing caused communities to diverge from unmixed controls (Bray–Curtis dissimilarity; 0.75 vs. 0.25), while reducing within-group heterogeneity. Our results imply that the vast diversity observed in soil may be supported by spatial heterogeneity and isolation of microbial communities, and also provide insight into the effects of physical disturbance and community coalescence events. By isolating and better understanding the effects of spatial heterogeneity and disconnectivity on soil microbial communities, we can better extrapolate how anthropogenic disturbances may affect broad soil functions.

     
    more » « less
  3. Abstract

    Land use change has long-term effects on the structure of soil microbial communities, but the specific community assembly processes underlying these effects have not been identified. To investigate effects of historical land use on microbial community assembly, we sampled soils from several currently forested watersheds representing different historical land management regimes (e.g., undisturbed reference, logged, converted to agriculture). We characterized bacterial and fungal communities using amplicon sequencing and used a null model approach to quantify the relative importance of selection, dispersal, and drift processes on bacterial and fungal community assembly. We found that bacterial communities were structured by both selection and neutral (i.e., dispersal and drift) processes, while fungal communities were structured primarily by neutral processes. For both bacterial and fungal communities, selection was more important in historically disturbed soils compared with adjacent undisturbed sites, while dispersal processes were more important in undisturbed soils. Variation partitioning identified the drivers of selection to be changes in vegetation communities and soil properties (i.e., soil N availability) that occur following forest disturbance. Overall, this study casts new light on the effects of historical land use on soil microbial communities by identifying specific environmental factors that drive changes in community assembly.

     
    more » « less
  4. Abstract

    Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associatedOreomunnea mexicana(Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of theITS2(fungi) and16SrRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.

     
    more » « less
  5. Semrau, Jeremy D. (Ed.)
    ABSTRACT This study investigated the differences in microbial community abundance, composition, and diversity throughout the depth profiles in soils collected from corn and soybean fields in Iowa (United States) using 16S rRNA amplicon sequencing. The results revealed decreased richness and diversity in microbial communities at increasing soil depth. Soil microbial community composition differed due to crop type only in the top 60 cm and due to location only in the top 90 cm. While the relative abundance of most phyla decreased in deep soils, the relative abundance of the phylum Proteobacteria increased and dominated agricultural soils below the depth of 90 cm. Although soil depth was the most important factor shaping microbial communities, edaphic factors, including soil organic matter, soil bulk density, and the length of time that deep soils were saturated with water, were all significant factors explaining the variation in soil microbial community composition. Soil organic matter showed the highest correlation with the exponential decrease in bacterial abundance with depth. A greater understanding of how soil depth influences the diversity and composition of soil microbial communities is vital for guiding sampling approaches in agricultural soils where plant roots extend beyond the upper soil profile. In the long term, a greater knowledge of the influence of depth on microbial communities should contribute to new strategies that enhance the sustainability of soil, which is a precious resource for food security. IMPORTANCE Determining how microbial properties change across different soils and within the soil depth profile will be potentially beneficial to understanding the long-term processes that are involved in the health of agricultural ecosystems. Most literature on soil microbes has been restricted to the easily accessible surface soils. However, deep soils are important in soil formation, carbon sequestration, and providing nutrients and water for plants. In the most productive agricultural systems in the United States where soybean and corn are grown, crop plant roots extend into the deeper regions of soils (>100 cm), but little is known about the taxonomic diversity or the factors that shape deep-soil microbial communities. The findings reported here highlight the importance of soil depth in shaping microbial communities, provide new information about edaphic factors that influence the deep-soil communities, and reveal more detailed information on taxa that exist in deep agricultural soils. 
    more » « less