Developing more stress‐tolerant crops will require greater knowledge of the physiological basis of stress tolerance. Here, we explore how biomass declines in response to salinity relate to leaf traits across 20 genotypes of cultivated sunflower (
Disruption of ion homeostasis is a major component of salinity stress's effect on crop yield. In cultivated sunflower prior work revealed a negative relationship between vigor and salinity tolerance. Here, we determined the association of elemental content/distribution traits with salinity tolerance, both with and without taking vigor (biomass in control treatment) into account. We grew seedlings of 12
- PAR ID:
- 10456685
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Plant Direct
- Volume:
- 4
- Issue:
- 7
- ISSN:
- 2475-4455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Helianthus annuus ). Plant growth, leaf physiological traits and leaf elemental composition were assessed after 21 days of salinity treatments (0, 50, 100, 150 or 200 mM NaCl) in a greenhouse study. There was a trade‐off in performance such that vigorous genotypes, those with higher biomass at 0 mM NaCl, had both a larger absolute decrease and proportional decrease in biomass due to increased salinity. More vigorous genotypes at control were less tolerant to salinity. Contrary to expectation, genotypes with a low increase in leaf Na and decrease in K:Na were not better at maintaining biomass with increasing salinity. Rather, genotypes with a greater reduction in leaf S and K content were better at maintaining biomass at increased salinity. While we found an overall trade‐off between sunflower vigour and salt tolerance, some genotypes were more tolerant than expected. Further analysis of the traits and mechanisms underlying this trade‐off may allow us to breed these into high‐vigour genotypes in order to increase their salt tolerance. -
Abstract Cultivated crops are generally expected to have less abiotic stress tolerance than their wild relatives. However, this assumption is not well supported by empirical literature and may depend on the type of stress and how it is imposed, as well as the measure of tolerance being used. Here, we investigated whether wild and cultivated accessions of
differed in stress tolerance assessed as proportional decline in biomass due to drought and whether wild and cultivated accessions differed in trait responses to drought and trait associations with tolerance. In a greenhouse study,Helianthus annuus accessions in the two domestication classes (eight cultivated and eight wild accessions) received two treatments: a well‐watered control and a moderate drought implemented as a dry down followed by maintenance at a predetermined soil moisture level with automated irrigation. Treatments were imposed at the seedling stage, and plants were harvested after 2 weeks of treatment. The proportional biomass decline in response to drought was 24% for cultivatedH. annuus accessions but was not significant for the wild accessions. Thus, using the metric of proportional biomass decline, the cultivated accessions had less drought tolerance. Among accessions, there was no tradeoff between drought tolerance and vigor assessed as biomass in the control treatment. In a multivariate analysis, wild and cultivated accessions did not differ from each other or in response to drought for a subset of morphological, physiological, and allocational traits. Analyzed individually, traits varied in response to drought in wild and/or cultivated accessions, including declines in specific leaf area, leaf theoretical maximum stomatal conductance (gsmax), and stomatal pore length, but there was no treatment response for stomatal density, succulence, or the ability to osmotically adjust. Focusing on traits associations with tolerance, plasticity in gsmaxwas the most interesting because its association with tolerance differed by domestication class (although the effects were relatively weak) and thus might contribute to lower tolerance of cultivated sunflower. OurH. annuus results support the expectation that stress tolerance is lower in crops than wild relatives under some conditions. However, determining the key traits that underpin differences in moderate drought tolerance between wild and cultivatedH. annuus remains elusive.H. annuus -
Abstract Plant genome size influences the functional relationships between cellular and whole‐plant physiology, but we know little about its importance to plant tolerance of environmental stressors and how it contributes to range limits and invasion success. We used native and invasive lineages of a wetland plant to provide the first experimental test of the Large Genome Constraint Hypothesis (LGCH)—that plants with large genomes are less tolerant of environmental stress and less plastic under stress gradients than plants with small genomes. We predicted that populations with larger genomes would have a lower tolerance and less plasticity to a stress gradient than populations with smaller genomes. In replicated experiments in northern and southern climates in the United States, we subjected plants from 35 populations varying in genome size and lineage to two salinity treatments. We measured traits associated with growth, physiology, nutrition, defense, and plasticity. Using AICc model selection, we found all plant traits, except stomatal conductance, were influenced by environmental stressors and genome size. Increasing salinity was stressful to plants and affected most plant traits. Notably, biomass in the high‐salinity treatment was 3.0 and 4.9 times lower for the invasive and native lineages, respectively. Plants in the warmer southern greenhouse had higher biomass, stomate density, stomatal conductance, leaf toughness, and lower aboveground percentage of N and total phenolics than in the northern greenhouse. Moreover, responses to the salinity gradient were generally much stronger in the southern than northern greenhouse. Aboveground biomass increased significantly with genome size for the invasive lineage (43% across genome sizes) but not for the native. For 8 of 20 lineage trait comparisons, greenhouse location × genome size interaction was also significant. Interestingly, the slope of the relationship between genome size and trait means was in the opposite direction for some traits between the gardens providing mixed support for LGCH. Finally, for 30% of the comparisons, plasticity was significantly related to genome size—for some plant traits, the relationship was positive, and in others, it was negative. Overall, we found mixed support for LGCH and for the first time found that genome size is associated with plasticity, a trait widely regarded as important to invasion success.
-
Summary The development of salt‐tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate the genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD‐genome) and diploid (A‐ and D‐genome)
Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to 2 weeks of exposure to moderate (50 mm NaCl) and high (100 mm NaCl) hydroponic salinity treatments. Our results showed that the most salt‐tolerant species were the allopolyploidGossypium mustelinum from north‐east Brazil, the D‐genome diploidGossypium klotzschianum from the Galapagos Islands, followed by the A‐genome diploids of Africa and Asia. Generally, A‐genome accessions outperformed D‐genome cottons under salinity conditions. Allopolyploid accessions from either diploid genomic group did not show significant differences in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy in itself need not be associated with increased salinity stress tolerance and provide information for using the secondaryGossypium gene pool to breed for improved salt tolerance. -
Premise Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution.
Methods This study examines cold tolerance within and among species in the genus
Arabidopsis . We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of fiveArabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT 50).Results We found variability within and among taxa in cold tolerance. There was no significant within‐species relationship between latitude and cold tolerance. However, the northern taxa,
A. kamchatica ,A. lyrata subsp.petraea , andA. lyrata subsp.lyrata , were more cold tolerant thanA. thaliana andA. halleri subsp.gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant forA. halleri subsp.gemmifera . For all taxa exceptA. lyrata subsp.lyrata , theLT 50values for cold‐acclimated plants were higher than the January mean daily minimum temperature (Tmin), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range.Conclusions Arabidopsis lyrata andA. kamchatica were far more cold tolerant thanA. thaliana . These extremely cold‐tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.