skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the impact of the phosphorylation status of tyrosine residues within the TACC domain of TACC3 on microtubule behavior during axon growth and guidance
Abstract Axon guidance is a critical process in forming the connections between a neuron and its target. The growth cone steers the growing axon toward the appropriate direction by integrating extracellular guidance cues and initiating intracellular signal transduction pathways downstream of these cues. The growth cone generates these responses by remodeling its cytoskeletal components. Regulation of microtubule dynamics within the growth cone is important for making guidance decisions. TACC3, as a microtubule plus‐end binding (EB) protein, modulates microtubule dynamics during axon outgrowth and guidance. We have previously shown thatXenopus laevisembryos depleted of TACC3 displayed spinal cord axon guidance defects, while TACC3‐overexpressing spinal neurons showed increased resistance to Slit2‐induced growth cone collapse. Tyrosine kinases play an important role in relaying guidance signals to downstream targets during pathfinding events via inducing tyrosine phosphorylation. Here, in order to investigate the mechanism behind TACC3‐mediated axon guidance, we examined whether tyrosine residues that are present in TACC3 have any role in regulating TACC3's interaction with microtubules or during axon outgrowth and guidance behaviors. We find that the phosphorylatable tyrosines within the TACC domain are important for the microtubule plus‐end tracking behavior of TACC3. Moreover, TACC domain phosphorylation impacts axon outgrowth dynamics such as growth length and growth persistency. Together, our results suggest that tyrosine phosphorylation of TACC3 affects TACC3's microtubule plus‐end tracking behavior as well as its ability to mediate axon growth dynamics in cultured embryonic neural tube explants.  more » « less
Award ID(s):
1656510
PAR ID:
10456703
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Cytoskeleton
Volume:
77
Issue:
7
ISSN:
1949-3584
Page Range / eLocation ID:
p. 277-291
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gupton, Stephanie L (Ed.)
    Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to morphogenetic processes of the plasma membrane, rather than for regulating actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment. 
    more » « less
  2. Dague, Etienne (Ed.)
    The formation of neuron networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system, and for creating novel bioinspired materials for tissue engineering and neuronal repair. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body towards target neurons. Axonal growth is guided by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical features of the growth substrate. The dynamics of the growing axon and its biomechanical interactions with the growing substrate remains poorly understood. In this paper, we develop a model of axonal motility which incorporates mechanical interactions between the axon and the growth substrate. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on surfaces with micropatterned periodic geometrical features: diffusion (cell motility) coefficients, speed and angular distributions, and axon bending rigidities. Experiments performed on neurons treated Taxol (inhibitor of microtubule dynamics) and Blebbistatin (disruptor of actin filaments) show that the dynamics of the cytoskeleton plays a critical role in the axon steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrates that promote neuronal growth and nerve repair. 
    more » « less
  3. IntroductionIn the developing brain, neurons extend an axonal process through a complex and changing environment to form synaptic connections with the correct targets in response to extracellular cues. Microtubule and actin filaments provide mechanical support and drive axon growth in the correct direction. The axonal cytoskeleton responds to extracellular guidance cues. Netrin-1 is a multifunctional guidance cue that can induce alternate responses based on the bound receptor. The mechanism by which actin responds to Netrin-1 is well described. However, how Netrin-1 influences the microtubule cytoskeleton is less understood. Appropriate microtubule function is required for axon pathfinding, as mutations in tubulin phenocopy axon crossing defects of Netrin-1 and DCC mutants. Microtubule stabilization is required for attractive guidance cue response. The C-terminal tails of microtubules can be post-translationally modified. Post-translational modifications (PTMs) help control the microtubule cytoskeleton. MethodsWe measured polyglutamylation in cultured primary mouse cortical neurons before and after Netrin-1 stimulation. We used immunohistochemistry to measure how Netrin-1 stimulation alters microtubule-associated protein localization. Next, we manipulated TTLL1 to determine if Netrin-1-induced axon growth and MAP localization depend on polyglutamylation levels. ResultsIn this study, we investigated if Netrin-1 signaling alters microtubule PTMs in the axon. We found that microtubule polyglutamylation increases after Netrin-1 stimulation. This change in polyglutamylation is necessary for Netrin-1-induced axonal growth rate increases. We next determined that MAP1B and DCX localization changes in response to Netrin-1. These proteins can both stabilize the microtubule cytoskeleton and may be responsible for Netrin-1-induced growth response in neurons. The changes in DCX and MAP1B depend on TTLL1, a protein responsible for microtubule polyglutamylation. 
    more » « less
  4. The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight. 
    more » « less
  5. The formation of neuron networks is a process of fundamental importance for understanding the development of the nervous system and for creating biomimetic devices for tissue engineering and neural repair. The basic process that controls the network formation is the growth of an axon from the cell body and its extension towards target neurons. Axonal growth is directed by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical properties of the growth substrate. Despite significant recent progress, the steering of the growing axon remains poorly understood. In this paper, we develop a model of axonal motility, which incorporates substrate-geometry sensing. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on micropatterned surfaces: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. Experiments performed on neurons treated with inhibitors for microtubules (Taxol) and actin filaments (Y-27632) indicate that cytoskeletal dynamics play a critical role in the steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which geometrical patterns impart high traction forces to the growth cone. These results have important implications for bioengineering novel substrates to guide neuronal growth and promote nerve repair. 
    more » « less