skip to main content


This content will become publicly available on September 5, 2024

Title: Encouraging engineering design teams to engage in expert iterative practices with tools to support coaching in problem‐based learning
Abstract Background

To create design solutions experienced engineering designers engage in expert iterative practice. Researchers find that students struggle to learn this critical engineering design practice, particularly when tackling real‐world engineering design problems.

Purpose/Hypothesis

To improve our ability to teach iteration, this study contributes (i) a new teaching approach to improve student teams' expert iterative practices, and (ii) provides support to existing frameworks—chiefly the Design Risk Framework—that predict the key metacognitive processes we should support to help students to engage in expert iterative practices in real‐world engineering design.

Design/Method

In a 3‐year design‐based research study, we developed a novel approach to teaching students to take on real‐world engineering design projects with real clients, users, and contexts to engage in expert iterative practices.

Results

Study 1 confirms that student teams struggle to engage in expert iterative practices, even when supported by problem‐based learning (PBL) coaching. Study 2 tests our novel approach, Planning‐to‐Iterate, which uses (i) templates, (ii) guiding questions to help students to define problem and solution elements, and (iii) risk checklists to help student teams to identify risks. We found that student teams using Planning‐to‐Iterate engaged in more expert iterative practices while receiving less PBL coaching.

Conclusions

This work empirically tests a design argument—a theory for a novel teaching approach—that augments PBL coaching and helps students to identify risks and engage in expert iterative practices in engineering design projects.

 
more » « less
NSF-PAR ID:
10456720
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
112
Issue:
4
ISSN:
1069-4730
Format(s):
Medium: X Size: p. 1012-1031
Size(s):
["p. 1012-1031"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  
    more » « less
  2. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less
  3. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  4. Abstract Practitioner notes

    What is already known about this topic

    Scholarly attention has turned to examining Artificial Intelligence (AI) literacy in K‐12 to help students understand the working mechanism of AI technologies and critically evaluate automated decisions made by computer models.

    While efforts have been made to engage students in understanding AI through building machine learning models with data, few of them go in‐depth into teaching and learning of feature engineering, a critical concept in modelling data.

    There is a need for research to examine students' data modelling processes, particularly in the little‐researched realm of unstructured data.

    What this paper adds

    Results show that students developed nuanced understandings of models learning patterns in data for automated decision making.

    Results demonstrate that students drew on prior experience and knowledge in creating features from unstructured data in the learning task of building text classification models.

    Students needed support in performing feature engineering practices, reasoning about noisy features and exploring features in rich social contexts that the data set is situated in.

    Implications for practice and/or policy

    It is important for schools to provide hands‐on model building experiences for students to understand and evaluate automated decisions from AI technologies.

    Students should be empowered to draw on their cultural and social backgrounds as they create models and evaluate data sources.

    To extend this work, educators should consider opportunities to integrate AI learning in other disciplinary subjects (ie, outside of computer science classes).

     
    more » « less
  5. Abstract Background

    Despite the prevalence and potential of K–12 engineering outreach programs, the moment‐to‐moment dynamics of outreach educators' facilitation of engineering learning experiences are understudied. There is a need to identify outreach educators' teaching moves and to explore the implications of these moves.

    Purpose/Hypothesis

    We offer a preliminary framework for characterizing engineering outreach educators' teaching moves in relation to principles of ambitious instruction. This study describes outreach educators' teaching moves and identifies learning opportunities afforded by these moves.

    Design/Method

    Through discourse analysis of video recordings of a university‐led engineering outreach program, we identified teaching moves of novice engineering outreach educators in interaction with elementary student design teams. We considered 18 outreach educators' teaching moves through a lens of ambitious instruction.

    Results

    In small group interactions, outreach educators used ambitious, conservative, and inclusive teaching moves. These novice educators utilized talk moves that centered students' ideas and agency. Ambitious moves included two novel teaching moves: design check‐ins and revoicing tangible manifestations of students' ideas. Ambitious moves offered students opportunities to engage in engineering design. Conservative moves provided opportunities for students to make technical and affective progress, and to experience engineering norms.

    Conclusions

    Our work is formative in describing engineering outreach educators' teaching moves and points to outreach educators' capability in using ambitious moves. Ambitious engineering instruction may be a useful framework for designing engineering outreach to support students' participation and progress in engineering design. Additionally, conservative teaching moves, typically considered constraining, may support productive student affect and engagement in engineering design.

     
    more » « less