skip to main content

Title: Impact of Vegetation‐Generated Turbulence on the Critical, Near‐Bed, Wave‐Velocity for Sediment Resuspension

Laboratory experiments examined the impact of model vegetation on wave‐driven resuspension. Model canopies were constructed from cylinders with three diameters (d= 0.32, 0.64, and 1.26 cm) and 12 densities (cylinders/m2) up to a solid volume fraction (ϕ) of 10%. The sediment bed consisted of spherical grains withd50= 85 μm. For each experiment, the wave velocity was gradually adjusted by increasing the amplitude of 2‐s waves in a stepwise fashion. A Nortek Vectrino sampled the velocity atz= 1.3 cm above the bed. The critical wave orbital velocity for resuspension was inferred from records of suspended sediment concentration (measured with optical backscatter) as a function of wave velocity. The critical wave velocity decreased with increasing solid volume fraction. The reduction in critical wave velocity was linked to stem‐generated turbulence, which, for the same wave velocity, increased with increasing solid volume fraction. The measured turbulence was consistent with a wave‐modified version of a stem‐turbulence model. The measurements suggested that a critical value of turbulent kinetic energy was needed to initiate resuspension, and this was used to define the critical wave velocity as a function of solid volume fraction. The model predicted the measured critical wave velocity for stem diametersd= 0.64 to 2 cm. Combining the critical wave velocity with an existing model for wave damping defined the meadow size for which wave damping would be sufficient to suppress wave‐induced sediment suspension within the interior of the meadow.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Page Range / eLocation ID:
p. 5904-5917
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wave velocity and suspended sediment concentration were measured over a sand bed with and without a model eelgrass meadow. The model meadow was geometrically and dynamically similar to the marine eelgrassZostera marina. Meadows were constructed with three stem densities: 280, 600, and 820 stems/m2. Ripples formed within the meadow only when the spacing between stem rows was larger than the wave excursion. When ripples formed, the ripple geometry was the same as that observed for bare bed. When ripples were present, the near‐bed turbulent kinetic energy (TKE) was dominated by the ripple‐generated turbulence, and both the near‐bedTKEand averaged suspended sediment concentration were similar across all meadow densities and bare bed at the same wave velocity. When ripples were absent, the near‐bedTKEwas dominated by the stem‐generated turbulence, and the averaged suspended sediment concentration was reduced, compared to cases with ripples but at the same wave velocity. For conditions with and without a model meadow, the sediment diffusivity inferred from vertical profiles of suspended sediment concentration increased linearly with distance from the bed.

    more » « less
  2. Abstract

    Laboratory experiments examined the impact of model vegetation on turbulence and resuspension. The turbulent kinetic energy increased with increasing velocity and increasing solid volume fraction, but did not depend on stem diameter. The vegetation‐generated turbulence dominated the total turbulence inside canopies. For the same sediment size, the critical turbulent kinetic energy at which resuspension was initiated was the same for both vegetated and bare beds, which resulted in a critical velocity that decreased with increasing solid volume fraction. Both the critical turbulence and critical velocity for resuspension had no dependence on stem diameter. However, for denser canopies and/or a canopy of smaller stem size, a greater energy slope is required to initiate resuspension. This study provides a way to predict the onset of resuspension in regions with vegetation, an important threshold for sediment transport and landscape evolution.

    more » « less
  3. Abstract

    The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy,kt, in vegetated channels from channel average velocityUand vegetation volume fractionϕwas validated for mobile sediment beds. Second, using data from several studies, the predictedktwas shown to be a good predictor of bed load transport rate,Qs, allowingQsto be predicted fromUandϕfor vegetated channels. The control ofQsbyktwas explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated withkt. Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ=0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasingϕ, again suggesting that vegetation facilitated the formation of sheet flow.

    more » « less
  4. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  5. Abstract

    Vegetation provides habitat and nature‐based solutions to coastal flooding and erosion, drawing significant interest in its restoration, which requires an understanding of sediment transport and retention. Laboratory experiments examined the influence of stem diameter and arrangement on bedload sediment transport by considering arrays of different stem diameter and mixed diameters. Bedload transport rate was observed to depend on turbulent kinetic energy, with no dependence on stem diameter, which was shown to be consistent with the impulse model for sediment entrainment. Existing predictors of bedload transport for bare beds, based on bed shear stress, were recast in terms of turbulence. The new turbulence‐based model predicted sediment transport measured in model canopies across a range of conditions drawn from several previous studies. A prediction of turbulence based on biomass and velocity was also described, providing an important step toward predicting turbulence and bedload transport in canopies of real vegetation morphology.

    more » « less