skip to main content


Title: A Carbon Flower Based Flexible Pressure Sensor Made from Large‐Area Coating
Abstract

Flexible pressure sensors are an essential part of robotic skin for human–machine interfaces, wearables, and implantable biomedical devices. However, the desirable characteristics of high sensitivity, conformability, and good scalability are often mutually exclusive. Here, a highly sensitive and flexible pressure sensor that can be easily fabricated by coating a carbon flower and elastomer composite is presented. The composite made from uniform‐sized carbon flower particles exhibits a contact‐based mechanism for pressure sensing, as opposed to typical carbon black pressure sensitive composites which utilize percolation as the sensing mechanism. The contact mechanism allows for an active layer down to 13 µm, and a bending insensitivity down to a 5.5 mm bending radius, while maintaining a high sensitivity. Furthermore, the composite is printed over a large 1 m × 2 cm pressure sensing area, showing the preparation of this sensor can be scaled to large area.

 
more » « less
NSF-PAR ID:
10456809
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
7
Issue:
18
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sensitive and flexible pressure sensors have invoked considerable interest for a broad range of applications in tactile sensing, physiological sensing, and flexible electronics. The barrier between high sensitivity and low fabrication cost needs to be addressed to commercialize such flexible pressure sensors. A low-cost sacrificial template-assisted method for the capacitive sensor has been reported herein, utilizing a porous Polydimethylsiloxane (PDMS) polymer and a multiwalled carbon nanotube (MWCNT) composite-based dielectric layer. The sensor shows high sensitivity of 2.42 kPa−1 along with a low limit of detection of 1.46 Pa. The high sensitivity originates from adding MWCNT to PDMS, increasing the composite polymer’s dielectric constant. Besides this, the pressure sensor shows excellent stability at a cyclic loading of 9000 cycles, proving its reliability for long-lasting application in tactile and physiological sensing. The high sensitivity of the sensor is suitable for the detection of small deformations such as pulse waveforms as well as tactile pressure sensing. In addition, the paper demonstrates a simultaneous contact and non-contact sensing capability suitable for dual sensing (pressure and proximity) with a single data readout system. The dual-mode sensing capability may open opportunities for realizing compact systems in robotics, gesture control, contactless applications, and many more. The practicality of the sensor was shown in applications such as tactile sensing, Morse code generator, proximity sensing, and pulse wave sensing. 
    more » « less
  2. Abstract

    Wearable sensing platforms have been rapidly advanced over recent years, thanks to numerous achievements in a variety of sensor fabrication techniques. However, the development of a flexible proximity sensor that can perform in a large range of object mobility remains a challenge. Here, a polymer-based sensor that utilizes a nanostructure composite as the sensing element has been presented for forthcoming usage in healthcare and automotive applications. Thermoplastic Polyurethane (TPU)/Carbon Nanotubes (CNTs) composites are capable of detecting presence of an external object in a wide range of distance. The proximity sensor exhibits an unprecedented detection distance of 120 mm with a resolution of 0.3%/mm. The architecture and manufacturing procedures of TPU/CNTs sensor are straightforward and performance of the proximity sensor shows robustness to reproducibility as well as excellent electrical and mechanical flexibility under different bending radii and over hundreds of bending cycles with variation of 4.7% and 4.2%, respectively. Tunneling and fringing effects are addressed as the sensing mechanism to explain significant capacitance changes. Percolation threshold analysis of different TPU/CNT contents indicated that nanocomposites having 2 wt% carbon nanotubes are exhibiting excellent sensing capabilities to achieve maximum detection accuracy and least noise among others. Fringing capacitance effect of the structure has been systematically analyzed by ANSYS Maxwell (Ansoft) simulation, as the experiments precisely supports the sensitivity trend in simulation. Our results introduce a new mainstream platform to realize an ultrasensitive perception of objects, presenting a promising prototype for application in wearable proximity sensors for motion analysis and artificial electronic skin.

     
    more » « less
  3. Abstract

    Flexible piezoresistive films, such as, carbon black/polydimethylsiloxane (C‐PDMS) composites, are often used as skin analogs and integrated into complex array sensors for tactile sensing. The uniformity of the sensor characteristics heavily depends on the homogeneity of the composite. Therefore, the ability to locally characterize a film that will be integrated into a complex force sensor could be critical. Here, a method to characterize the local sensitivity of flexible piezoresistive films is presented. Using a conductive sphere, which was chosen over a flat probe to eliminate misalignment issues, the surface of a thin film composite is indented to characterize the change in resistivity in terms of average strain. Experiments were performed with 15 and 18 wt% carbon black C‐PDMS films of varying thickness. The contact radius of the probe with the piezoresistive film was estimated using the Johnson‐Roberts‐Kendall contact theory. Theoretical contact area estimates were found to agree with contact radius measurements carried out using optically transparent PDMS films observed through an optical microscope. Results show that C‐PDMS with 15 wt% carbon black exhibit a higher rate if change of resistivity and gauge factor than films of same thickness with 18 wt% carbon black. On the other hand, thicker films exhibit higher gauge factors for the two tested carbon black contents. Tests carried out at multiple locations yielded consistent sensitivity values, making these types of composites suitable for array type force sensors.

     
    more » « less
  4. Abstract

    Human–machine interface requires various sensors for communication, manufacturing and environmental control, and health and safety monitoring. Capacitive sensors have been used to detect touch, distance, geometry, electric property, and environmental parameters. However, highly sensitive proximity detection with a small form factor has always been a challenge. This paper presents a capacitive sensor composed of a nanostructured electrode array for contact and noncontact detection. In the sensor configuration, the nanostructured electrode is made of high aspect ratio cellulose fibers embedded with carbon nanotubes. The complementary electrode is designed to be smaller in surface area for high sensitivity. Based on the analysis, the unique sensing mechanism is shown to enhance the proximity sensitivity for target detection. A pair of asymmetrically designed electrodes are characterized and compared with the traditional symmetric electrodes for proximity and contact detection of human hands. The sensor performance is also characterized for detecting water mass in glass and metal cups. In the end, a smart pad that can recognize human gestures, gait, and water mass with unprecedented sensitivity is demonstrated.

     
    more » « less
  5. Abstract

    Compliant pressure sensors are a key technology for wearable electronics and haptic interfaces. Making transistors pressure‐sensitive provides an opportunity to combine sensing and matrix readout characteristics. However, there is typically a trade‐off in pressure sensitivity, complexity of fabrication, and mechanical resilience. To overcome these challenges, an all solution‐processed kirigami‐inspired stretchable organic thin film transistor (OTFT) based pressure sensor array is introduced. The OTFTs integrate several novel processing and design strategies that include electrohydrodynamic (EHD) jet‐printed Ag nanowire (NW) electrodes that are partially embedded in a polyimide (PI) matrix. The EHD printing provides fine pattern control and the NW/PI composite improves mechanical stability. The OTFTs are made pressure sensitive by employing a porous styrene‐ethylene‐butylene‐styrene gate dielectric achieved using a breath figure method. The pore density can be controlled to achieve tunable pressure sensitivity. The OTFTs are shown to maintain performance under a small bending radius (1 mm) and can sense applied pressure from 0.75 to 25 kPa. Finally, a cut pattern is introduced into the substrate that imparts stretchability while maintaining pressure sensor functionality. The integration of the design features and processing methods introduced in this work enables mechanically resilient stretchable pressure sensors.

     
    more » « less