Abstract Marine heatwave (MHW) events have led to acute decreases in primary production and phytoplankton biomass in the surface ocean, particularly at the mid latitudes. In the Northeast Pacific, these anomalous events have occasionally encroached onto the Oregon shelf during the ecologically important summer upwelling season. Increased temperatures reduce the density of offshore waters, and as a MHW is present offshore, coincident downwelling or relaxation may transport warmer waters inshore. As an event persists, new upwelling‐driven blooms may be prevented from extending further offshore. This work focuses on MHWs and coincident events that occurred off Oregon during the summers of 2015–2023. In late summer 2015 and 2019, both documented MHW years, coastal phytoplankton biomass extended on average 6 and 9 km offshore of the shelf break along the Newport Hydrographic Line, respectively. During years not influenced by anomalous warming, coastal biomass extended over 34 km offshore of the shelf break. Reduced biomass also occurs with reduced upwelling transport and nutrient flux during these anomalous warm periods. However, the enhanced front associated with a MHW aids in the compression of phytoplankton closer to shore. Over shorter events, heatwaves propagating far inshore also coincide with reduced chlorophyllaand sea‐surface density at select cross‐shelf locations, further supporting a physical displacement mechanism. Paired with the physiological impacts on communities, heatwave‐reinforced physical confinement of blooms over the inner‐shelf may have a measurable effect on the gravitational flux and alongshore transport of particulate organic carbon.
more »
« less
The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current
Abstract Transitions in phytoplankton community composition are typically attributed to ecological succession even in physically dynamic upwelling systems like the California Current Ecosystem (CCE). An expected succession from a high‐chlorophyll (~ 10μg L−1) diatom‐dominated assemblage to a low‐chlorophyll (< 1.0μg L−1) non‐diatom dominated assemblage was observed during a 2013 summer upwelling event in the CCE. Using an interdisciplinary field‐based space‐for‐time approach leveraging both biogeochemical rate measurements and metatranscriptomics, we suggest that this successional pattern was driven primarily by physical processes. An annually recurring mesoscale eddy‐like feature transported significant quantities of high‐phytoplankton‐biomass coastal water offshore. Chlorophyll was diluted during transport, but diatom contributions to phytoplankton biomass and activity (49–62% observed) did not decline to the extent predicted by dilution (18–24% predicted). Under the space‐for‐time assumption, these trends infer diatom biomass and activity and were stimulated during transport. This is hypothesized to result from decreased contact rates with mortality agents (e.g., viruses) and release from nutrient limitation (confirmed by rate data nearshore), as predicted by the Disturbance‐Recovery hypothesis of phytoplankton bloom formation. Thus, the end point taxonomic composition and activity of the phytoplankton assemblage being transported by the eddy‐like feature were driven by physical processes (mixing) affecting physiological (release from nutrient limitation, increased growth) and ecological (reduced mortality) factors that favored the persistence of the nearshore diatoms during transit. The observed connection between high‐diatom‐biomass coastal waters and non‐diatom‐dominated offshore waters supports the proposed mechanisms for this recurring eddy‐like feature moving seed populations of coastal phytoplankton offshore and thereby sustaining their activity.
more »
« less
- PAR ID:
- 10456825
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 65
- Issue:
- 9
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 1974-1989
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Eastern boundary upwelling currents are some of the most biologically productive and diverse regions in the world's oceans. Driven by equatorward winds and Ekman transport, surface waters are transported offshore and replaced by cold, nutrient‐rich deep waters that seed extensive phytoplankton blooms. Studying phytoplankton community succession and physiological acclimation during the initial stages of upwelling is critical to building a comprehensive understanding of phytoplankton responses to upwelling in these important regions. Additionally, factors like lateral transport, seed population dynamics and physiological and molecular shifts are conducive to shaping the community assemblage and primary productivity. This study examines how phytoplankton gene expression and resulting physiology change between early and later phases of upwelling. By incorporating metatranscriptomic analyses and stable isotope incubations to measure nutrient uptake kinetics into our assessment of early and later upwelling stages, we observed variability in phytoplankton assemblages and differential gene expression of phytoplankton that were de‐coupled from their physiology. We show that the gene expression response to a fresh upwelling event precedes their physiological response. Ultimately, understanding how phytoplankton change through the course of an upwelling event is critical to assessing their importance to regional biological rate processes, trophic systems and resulting biogeochemistry.more » « less
-
Huber, Julie A. (Ed.)ABSTRACT Wind-driven upwelling followed by relaxation results in cycles of cold nutrient-rich water fueling intense phytoplankton blooms followed by nutrient depletion, bloom decline, and sinking of cells. Surviving cells at depth can then be vertically transported back to the surface with upwelled waters to seed another bloom. As a result of these cycles, phytoplankton communities in upwelling regions are transported through a wide range of light and nutrient conditions. Diatoms appear to be well suited for these cycles, but their responses to them remain understudied. To investigate the bases for diatoms’ ecological success in upwelling environments, we employed laboratory simulations of a complete upwelling cycle with a common diatom, Chaetoceros decipiens , and coccolithophore, Emiliania huxleyi . We show that while both organisms exhibited physiological and transcriptomic plasticity, the diatom displayed a distinct response enabling it to rapidly shift-up growth rates and nitrate assimilation when returned to light and available nutrients following dark nutrient-deplete conditions. As observed in natural diatom communities, C. decipiens highly expresses before upwelling, or frontloads, key transcriptional and nitrate assimilation genes, coordinating its rapid response to upwelling conditions. Low-iron simulations showed that C. decipiens is capable of maintaining this response when iron is limiting to growth, whereas E. huxleyi is not. Differential expression between iron treatments further revealed specific genes used by each organism under low iron availability. Overall, these results highlight the responses of two dominant phytoplankton groups to upwelling cycles, providing insight into the mechanisms fueling diatom blooms during upwelling events. IMPORTANCE Coastal upwelling regions are among the most biologically productive ecosystems. During upwelling events, nutrient-rich water is delivered from depth resulting in intense phytoplankton blooms typically dominated by diatoms. Along with nutrients, phytoplankton may also be transported from depth to seed these blooms then return to depth as upwelling subsides creating a cycle with varied conditions. To investigate diatoms’ success in upwelling regions, we compare the responses of a common diatom and coccolithophore throughout simulated upwelling cycles under iron-replete and iron-limiting conditions. The diatom exhibited a distinct rapid response to upwelling irrespective of iron status, whereas the coccolithophore’s response was either delayed or suppressed depending on iron availability. Concurrently, the diatom highly expresses, or frontloads, nitrate assimilation genes prior to upwelling, potentially enabling this rapid response. These results provide insight into the molecular mechanisms underlying diatom blooms and ecological success in upwelling regions.more » « less
-
Abstract In coastal West Antarctic Peninsula (WAP) waters, large phytoplankton blooms in late austral spring fuel a highly productive marine ecosystem. However, WAP atmospheric and oceanic temperatures are rising, winter sea ice extent and duration are decreasing, and summer phytoplankton biomass in the northern WAP has decreased and shifted toward smaller cells. To better understand these relationships, an Imaging FlowCytobot was used to characterize seasonal (spring to autumn) phytoplankton community composition and cell size during a low (2017–2018) and high (2018–2019) chlorophyllayear in relation to physical drivers (e.g., sea ice and meteoric water) at Palmer Station, Antarctica. A shorter sea ice season with early rapid retreat resulted in low phytoplankton biomass with a low proportion of diatoms (2017–2018), while a longer sea ice season with late protracted retreat resulted in the opposite (2018–2019). Despite these differences, phytoplankton seasonal succession was similar in both years: (1) a large‐celled centric diatom bloom during spring sea ice retreat; (2) a peak summer phase comprised of mixotrophic cryptophytes with increases in light and postbloom organic matter; and (3) a late summer phase comprised of small (< 20 μm) diatoms and mixed flagellates with increases in wind‐driven nutrient resuspension. In addition, cell diameter decreased from November to April with increases in meteoric water in both years. The tight coupling between sea ice, meltwater, and phytoplankton species composition suggests that continued warming in the WAP will affect phytoplankton seasonal dynamics, and subsequently seasonal food web dynamics.more » « less
-
null (Ed.)In addition to ocean acidification, a significant recent warming trend in Chinese coastal waters has received much attention. However, studies of the combined effects of warming and acidification on natural coastal phytoplankton assemblages here are scarce. We conducted a continuous incubation experiment with a natural spring phytoplankton assemblage collected from the Bohai Sea near Tianjin. Experimental treatments used a full factorial combination of temperature (7 and 11°C) and pCO 2 (400 and 800 ppm) treatments. Results suggest that changes in pCO 2 and temperature had both individual and interactive effects on phytoplankton species composition and elemental stoichiometry. Warming mainly favored the accumulation of picoplankton and dinoflagellate biomass. Increased pCO 2 significantly increased particulate organic carbon to particulate organic phosphorus (C:P) and particulate organic carbon to biogenic silica (C:BSi) ratios, and decreased total diatom abundance; in the meanwhile, higher pCO 2 significantly increased the ratio of centric to pennate diatom abundance. Warming and increased pCO 2 both greatly decreased the proportion of diatoms to dinoflagellates. The highest chlorophyll a biomass was observed in the high pCO 2 , high temperature phytoplankton assemblage, which also had the slowest sinking rate of all treatments. Overall, there were significant interactive effects of increased pCO 2 and warming on dinoflagellate abundance, pennate diatom abundance, diatom vs. dinoflagellates ratio and the centric vs. pennate ratio. These findings suggest that future ocean acidification and warming trends may individually and cumulatively affect coastal biogeochemistry and carbon fluxes through shifts in phytoplankton species composition and sinking rates.more » « less
An official website of the United States government
