skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Fourier transform infrared spectroscopy‐ based method for tracking diffusion in organogels
Abstract Organogels possess characteristics that make them promising materials for enhancing our understanding of nanostructure‐diffusion relationships in gels and for use in diffusion‐centered applications including drug delivery and nanoreactor media. Unlike hydrogels, however, there are no well‐recognized techniques for measuring the fundamental diffusion parameter of diffusivity,D, in organogels. The present work establishes a technique for measuringDbased upon Fourier‐transform infrared spectroscopy. Physically crosslinked gels composed of poly[styrene‐b‐(ethylene‐butylene)‐b‐styrene] and aliphatic mineral oil are used to showcase the new technique's capability. Diffusivity of unimers—oleic acid—and reverse micelles—sodium dioctyl sulfosuccinate (AOT)—within as‐prepared and preswollen gels is quantified and resultant values are commensurate with studies of unimer and micelle diffusion in hydrogels. The case of AOT diffusion is further validated through small‐angle X‐ray scattering analysis, which is in close agreement (<20% difference).  more » « less
Award ID(s):
1904047 1828082
PAR ID:
10456871
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
58
Issue:
12
ISSN:
2642-4150
Page Range / eLocation ID:
p. 1707-1716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Di Chenna, Pablo H. (Ed.)
    Organogels have recently been considered as materials for transdermal drug delivery media, wherein their transport and mechanical properties are among the most important considerations. Transport through organogels has only recently been investigated and findings highlight an inextricable link between gels’ transport and mechanical properties based upon the formulated polymer concentration. Here, organogels composed of styrenic triblock copolymer and different aliphatic mineral oils, each with a unique dynamic viscosity, are characterized in terms of their quasi-static uniaxial mechanical behavior and the internal diffusion of two unique solute penetrants. Mechanical testing results indicate that variation of mineral oil viscosity does not affect gel mechanical behavior. This likely stems from negligible changes in the interactions between mineral oils and the block copolymer, which leads to consistent crosslinked network structure and chain entanglement (at a fixed polymer concentration). Conversely, results from diffusion experiments highlight that two penetrants—oleic acid (OA) and aggregated aerosol-OT (AOT)—diffuse through gels at a rate inversely proportional to mineral oil viscosity. The inverse dependence is theoretically supported by the hydrodynamic model of solute diffusion through gels. Collectively, our results show that organogel solvent variation can be used as a design parameter to tailor solute transport through gels while maintaining fixed mechanical properties. 
    more » « less
  2. Gels are used in the oilfield. For example, during oil recovery, organogels are pumped underground into fractures within oil‐bearing rock, so as to block fluid flow. However, after several days, the gels must be degraded (liquefied) to enable oil extraction through the fractures. To degrade gels, ‘degrading agents’ as well as external stimuli have been examined. Here, a concept is demonstrated that avoids external agents and stimuli:self‐degrading organogelsbased on the self‐assembly of molecular gelators. The gels are a) extremely robust (free standing solids) at timet= 0 and (b) degrade spontaneously into a sol after a set timet=tdegrthat can be minutes, hours, or days. These properties are achieved by combining two readily available molecules — the organogelator (1,3:2,4)‐dibenzylidene sorbitol (DBS) and an acid (e.g., hydrochloric acid, HCl) — in an organic solvent. DBS self‐assembles into nanoscale fibrils, which connect into a 3‐D network, thereby gelling the solvent. The acid type and concentration set the value oftdegrat a given temperature. Degradation occurs because the acid slowly hydrolyzes the acetals on DBS, thereby converting DBS into small molecules that cannot form fibrils. DBS gels with a pre‐programmed “degradation clock” can be made with both polar and non‐polar organic solvents. The concept can be a game‐changer for oil recovery as it promises to make it safer, more efficient, and sustainable. 
    more » « less
  3. ABSTRACT Mechanical properties including the failure behavior of physically assembled gels or physical gels are governed by their network structure. To investigate such behavior, we consider a physical gel system consisting of poly(styrene)‐poly(isoprene)‐poly(styrene)[PS‐PI‐PS] in mineral oil. In these gels, the endblock (PS) molecular weights are not significantly different, whereas, the midblock (PI) molecular weight has been varied such that we can access gels with and without midblock entanglement. Small angle X‐ray scattering data reveals that the gels are composed of collapsed PS aggregates connected by PI chains. The gelation temperature has been found to be a function of the endblock concentration. Tensile tests display stretch‐rate dependent modulus at high strain for the gels with midblock entanglement. Creep failure behavior has also been found to be influenced by the entanglement. Fracture experiments with predefined cracks show that the energy release rate scales linearly with the crack‐tip velocity for all gels considered here. In addition, increase of midblock chain length resulted in higher viscous dissipation leading to a higher energy release rate. The results provide an insight into how midblock entanglement can possibly affect the mechanical properties of physically assembled triblock copolymer gels in a midblock selective solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1014–1026 
    more » « less
  4. Abstract Hydrogels are often synthesized through photoinitiated step‐, chain‐, and mixed‐mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step‐growth (maleimide dimerization) to chain‐growth (maleimide‐styrene alternating copolymerization) network‐forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high‐fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications. 
    more » « less
  5. Carbohydrate based self-assembling supramolecular systems are important classes of new materials with many potential applications. In this study, a series of twelve glycoconjugates were synthesized and characterized in order to obtain effective supramolecular gelators. These glycoconjugates are mono-, di-, tri-, and tetra-functionalized pentaerythritol derivatives synthesized by using copper( i ) catalyzed azide alkyne cycloaddition reactions (CuAACs). The properties of these twelve compounds gave insight into the rational design of covalently linking multiple units of sugars. We found that the trivalent and tetravalent glycoclusters were effective molecular gelators, but the monovalent and divalent derivatives were typically not able to form gels in the tested solvents. The gels were characterized using rheology, optical microscopy, and atomic force microscopy. The tris-triazole derivative 21 was discovered to be a suitable gelator for the encapsulation of naproxen, vitamin B 2 , and vitamin B 12 . The strategy of covalently linking three or four small molecules to form trimeric or tetrameric branched compounds is a valid approach in designing useful self-assembling materials. The glycocluster based organogels and hydrogels obtained in this study have potential applications in biomedical research and as advanced functional materials. 
    more » « less