Legumes, such as peas, beans, and alfalfa, have evolved a remarkable ability to establish root nodule symbioses with nitrogen-fixing soil bacteria to fulfill their nitrogen needs. This partnership is characterized by a high degree of specificity, occurring both within and between host and bacterial species. Consequently, nodulation capacity and nitrogen-fixing efficiency vary significantly among different plant–bacteria pairs. The genetic and molecular mechanisms regulating symbiotic specificity are diverse, involving a wide array of host and bacterial genes and signals with various modes of action. Understanding the genetic basis of symbiotic specificity could enable the development of strategies to enhance nodulation capacity and nitrogen fixation efficiency. This knowledge will also help overcome the host range barrier, which is a critical step toward extending root nodule symbiosis to non-leguminous plants. In this review, we provide an update on our current understanding of the genetics and evolution of recognition specificity in root nodule symbioses, providing more comprehensive insights into the molecular signaling in plant–bacterial interactions.
The pathogenicity and antimicrobial properties of engineered nanomaterials (ENMs) are relatively well studied. However, less is known regarding the interactions of ENMs and agriculturally beneficial microorganisms that affect food security. Nanoceria (CeO2nanoparticles (NPs)), multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) have been previously shown to inhibit symbiotic N2fixation in soybeans, but direct rhizobial susceptibility is uncertain. Here,
- PAR ID:
- 10456909
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 16
- Issue:
- 21
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Summary Despite of important functions of strigolactones (SLs) and karrikins (KARs) in plant development, plant–parasite and plant–fungi interactions, their roles in soybean–rhizobia interaction remain elusive. SL/KAR signaling genes
GmMAX2a, GmD14s, andGmKAIs are activated by rhizobia infection. GmMAX2a restoredatmax2 root hair defects and soybean root hairs were changed inGmMAX2a overexpression (GmMAX2a ‐OE ) or knockdown (GmMAX2a ‐KD ) mutants.GmMAX2a ‐KD gave fewer, whereasGmMAX2a ‐OE produced more nodules than GUS hairy roots. Mutation ofGmMAX2a in itsKD orOE transgenic hairy roots affected the rhizobia infection‐induced increases in early nodulation gene expression. Both mutant hairy roots also displayed the altered auxin, jasmonate and abscisic acid levels, as further verified by transcriptomic analyses of their synthetic genes. Overexpression of an auxin synthetic geneGmYUC2a also affected SL and KAR signaling genes. GmMAX2a physically interacted with SL/KAR receptors GmD14s, GmKAIs, and GmD14Ls with different binding affinities, depending on variations in the critical amino acids, forming active D14/KAI‐SCFMAX2complexes. The knockdown mutant roots of the nodule‐specifically expressingGmKAI s andGmD14L s gave fewer nodules, with altered expression of several early nodulation genes. The expression levels ofGmKAI s, andGmD14L s were markedly changed inGmMAX2a mutant roots, so did their target repressor genesGmD53 s andGmSMAX1 s. Thus, SL and KAR signaling were involved in soybean–rhizobia interaction and nodulation partly through interactions with hormones, and this may explain the different effects of MXA2 orthologs on legume determinate and indeterminate nodulation. The study provides fresh insights into the roles of GmMAX2‐mediated SL/KAR signaling in soybean root hair and nodule formation. -
Abstract Legume crops such as soybean obtain a large portion of their nitrogen nutrition through symbiotic nitrogen fixation by diazotrophic rhizobia bacteria in root nodules. However, nodule occupancy by low‐capacity nitrogen‐fixing rhizobia can lead to lower‐than‐optimal levels of nitrogen fixation. Seed/root coating with engineered materials such as graphene‐carrying biomolecules that may promote specific attraction/attachment of desirable bacterial strains is a potential strategy that can help overcome this rhizobia competition problem. As a first step towards this goal, we assessed the impact of graphene on soybean and
Bradyrhizobium using a set of growth, biochemical, and physiological assays. Three different concentrations of graphene were tested for toxicity in soybean (50, 250, and 1,000 mg/l) andBradyrhizobia (25, 50, and 100 mg/l). Higher graphene concentrations (250 mg/l and 1,000 mg/l) promoted seed germination but slightly delayed plant development. Spectrometric and microscopy assays for hydrogen peroxide and superoxide anion suggested that specific concentrations of graphene led to higher levels of reactive oxygen species in the roots. In agreement, these roots also showed higher activities of antioxidant enzymes, catalase, and ascorbate peroxidase. Conversely, no toxic effects were detected onBradyrhizobia treated with graphene, and neither did they have higher levels of reactive oxygen species. Graphene treatments at 250 mg/l and 1,000 mg/l significantly reduced the number of nodules, but rhizobia infection and the overall nitrogenase activity were not affected. Our results show that graphene can be used as a potential vehicle for seed/root treatment. -
Determination of the surface hydrophobicity or wettability of nanomaterials and nanoparticles (NPs) is often challenged by the heterogeneous properties of NPs that vary with particle size, shape, surface charge, aggregation states, and surface sorption or coating. This study first summarized inherent limitations of the water contact angle, octanol–water partition coefficient ( K ow ) and surface adsorption of probe molecules in probing nanomaterial hydrophobicity. Then, we demonstrated the principle of a scanning probe method based on atomic force microscopy (AFM) for the local surface hydrophobicity measurement. Specifically, we measured the adhesion forces between functionalized AFM tips and self-assembled monolayers (SAMs) to establish a linear relationship between the adhesion forces and water contact angles based on the continuum thermodynamic approach (CTA). This relationship was used to determine the local surface hydrophobicity of seven different NPs ( i.e. , TiO 2 , ZnO, SiO 2 , CuO, CeO 2 , α-Fe 2 O 3 , and Ag), which agreed well with bulk contact angles of these NPs. Some discrepancies were observed for Fe 2 O 3 , CeO 2 and SiO 2 NPs, probably because of surface hydration and roughness effects. Moreover, the solution pH and ionic strength had negligible effects on the adhesion forces between the AFM tip and MWCNTs or C 60 , indicating that the hydrophobicity of carbonaceous nanomaterials is not influenced by pH or ionic strength (IS). By contrast, natural organic matter (NOM) appreciably decreased the hydrophobicity of MWCNTs and C 60 due to surface coating of hydrophilic NOM. This scanning probe method has been proved to be reliable and robust toward the accurate measurement of the nanoscale hydrophobicity of individual NPs or nanomaterials in liquid environments.more » « less
-
Abstract Recent work has suggested that the oxygen deficient zone (ODZ) and overlying surface waters of the eastern tropical South Pacific (ETSP) is a potential niche for dinitrogen (N2) fixation. Rates of dinitrogen fixation were measured in the ETSP above and within the ODZ in July 2013 using a modified15N2bubble addition method, wherein a bubble was added, mixed, and then removed, and the isotopic enrichment of the dissolved N2was measured directly for each incubation. N2fixation rates in the euphotic zone ranged from below detection to 3.9 nmol L−1d−1and were below detection at all depths surveyed within the ODZ. Depth‐integrated rates ranged from below detection to 289.7
μ mol m−2d−1. DNA and RNA of diversenifH genes were detected at both surface waters and in the ODZ. However, the results of this study suggest that N2fixation rates were low and contribute little to N cycling in the ETSP.