skip to main content


Title: Metallo‐supramolecular Crosslinked Polyurethanes
ABSTRACT

The effects of incorporating metal‐binding ligands as chain extenders in polyurethane elastomers were investigated. Segmented polyurethanes based on 2 kDa poly(tetramethylene oxide) (PTMO) and 4,4‐methylenebis(cyclohexyl isocyanate) were polymerized using a two‐step process in which 2,6‐bis(1‐ethyl‐5‐(methoxymethyl)‐1H‐benzo[d]imidazol‐2‐yl)pyridine was added as a chain extender. The resulting polyurethanes were then metallated using stoichiometric amounts of Zn(II) metal salts with different counterions. The resulting metallopolymers have substantially improved Young's moduli, increased failure stress, and improved thermomechanical behavior. The materials were microphase‐separated into anisotropic hard domains within a PTMO matrix. Simultaneous small‐angle X‐ray scattering and tensile testing revealed the minority hard segment domains remain relatively intact during elongation, likely due to the strength of the metal–ligand complex. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1744–1757

 
more » « less
NSF-PAR ID:
10456911
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part B: Polymer Physics
Volume:
57
Issue:
24
ISSN:
0887-6266
Page Range / eLocation ID:
p. 1744-1757
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Among the vast variety of polyurethane applications, several applications use the fluorescing nature of some of the polyurethanes. Even though 4,4′‐methylenebis(phenylisocyanate) (MDI)‐based polyurethanes fluoresce, their applications are rare because of the lack of knowledge about the fluorescence behavior of these polymers. In this study, the fluorophores responsible for the emission spectra of MDI‐based polyurethanes were identified, and their emission behavior was investigated. When excited, these polymers produce two prominent emission peaks located at 356 nm and 423 nm, which are assigned to the radiative relaxation of excited isolated hard segments and excited crystalline hard segment bundles of the MDI‐based polyurethanes, respectively. It was found that both chromophores can be excited by 293 nm UV radiation. The observed intensity variations of the two peaks with exposure time were attributed to the localized UV melting‐assisted migration of isolated hard segments. This migration facilitates the formation of crystalline hard segments. As the two chromophore populations are inversely propositional to each other, the relative intensity of the two emission peaks varies with UV exposure in a similar manner. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47431.

     
    more » « less
  2. ABSTRACT

    Cationic photopolymerization has become increasingly important in thin‐film applications for advantages including no oxygen inhibition and rapid polymerization rates. Photocurable cationic thin film properties are often modulated by incorporation of oligomeric and prepolymer materials, but little work has directly examined the effect of prepolymer structure and reactive group placement on the thermomechanical properties of the final material. To explore the role of molecular architecture, epoxy functionalized butyl acrylate gradient copolymers were synthesized with reactive groups in end segments or randomly distributed along the prepolymer chain. Polymerized end functionalized formulations exhibit moduli almost double that of random functionalized oligomer formulations. In addition, inclusion of end functionalized prepolymers decreases creep of resulting thin films by a factor of 10. Furthermore, decreasing the concentration of the cross‐linking diluent in end functionalized prepolymer systems results in amorphous networks with significantly lower mechanical strength. Increasing reactive groups at the ends of prepolymers produces stronger materials without affecting tensile elongation at break. These properties indicate that the structured oligomers facilitate the formation of continuous hard domains with high cross‐link density with inclusions of soft, flexible domains of low cross‐link density. This study demonstrates that the prepolymer architecture governs network formation and ultimate properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2017,55, 144–154

     
    more » « less
  3. ABSTRACT

    Ternary block copolymer (BCP)‐homopolymer (HP) blends offer a simple method for tuning nanostructure sizes to meet application‐specific demands. Comprehensive dissipative particle dynamic (DPD) simulations were performed to study the impact of polymer interactions, molecular weight, and HP volume fraction (φHP) on symmetric ternary blend morphological stability and domain spacing. DPD reproduces key features of the experimental phase diagram, including lamellar domain swelling with increasingφHP, the formation of an asymmetric bicontinuous microemulsion at a critical HP concentration , and macrophase separation with further HP addition. Simulation results matched experimental values for and lamellar swelling as a function of HP to BCP chain length ratio,α = NHP/NBCP. Structural analysis of blends with fixedφHPbut varyingαconfirmed that ternary blends follow the wet/dry brush model of domain swelling with the miscibility of HPs and BCPs depending onα. Longer HPs concentrate in the center of domains, boosting their swelling efficiencies compared to shorter chains. These results advance our understanding of BCP‐HP blend phase behavior and demonstrate the value of DPD for studying polymeric blends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 794–803

     
    more » « less
  4. ABSTRACT

    The synthesis and systematic comparison of a comprehensive library of well‐defined polymer architectures based on poly(acrylic acid) is reported. Through the development of new synthetic methodologies, linear, single branched, precision‐branched comb, and star polymers were prepared and their performance as dispersants was evaluated. The ability to accurately control chain lengths and branch points allows the subtle interplay between structure and dispersant performance to be defined and affords critical insights into the design of improved polymeric additives for coating formulations. The general industrial relevance of ionic polymers and branched macromolecular architectures supports these design rules for a wide range of other applications and materials, including as additives for personal care products and in water treatment. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 716–725

     
    more » « less
  5. ABSTRACT

    Sulfur and oleic acid, two components of industrial waste/byproducts, were combined in an effort to prepare more sustainable polymeric materials. Zinc oxide was employed to serve the dual role of compatibilizing immiscible sulfur and oleic acid as well as to suppress evolution of toxic H2S gas during reaction at high temperature. The reaction of sulfur, oleic acid, and zinc oxide led to a series of composites,ZOSx(x= wt % sulfur, wherexis 8–99). TheZOSxmaterials ranged from sticky tars to hard solids at room temperature. TheZOSxcompositions were assessed by1H NMR spectrometry, FTIR spectroscopy, and elemental microanalysis. CopolymersZOS59‐99, were further analyzed for thermal and mechanical properties by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Remarkably, evenZOS99, comprising only 1 wt % of zinc oxide/oleic acid (99 wt % S) exhibits at least an eightfold increase in storage modulus compared to sulfur alone. The four solid samples (59–99 wt % S) were thermally healable and readily remeltable with full retention of mechanical durability. These materials represent a valuable proof‐of‐concept for sustainably sourced, recyclable materials from unsaturated fatty acid waste products. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1704–1710

     
    more » « less