skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A jolt to the system: ram pressure on low-mass galaxies in simulations of the Local Group
ABSTRACT Low-mass galaxies are highly susceptible to environmental effects that can efficiently quench star formation. We explore the role of ram pressure in quenching low-mass galaxies ($$M_{*}\sim 10^{5}{-}10^{9}\, \rm {M}_{\odot }$$) within 2 Mpc of Milky Way (MW) hosts using the FIRE-2 simulations. Ram pressure is highly variable across different environments, within individual MW haloes, and for individual low-mass galaxies over time. The impulsiveness of ram pressure – the maximum ram pressure scaled to the integrated ram pressure prior to quenching – correlates with whether a galaxy is quiescent or star forming. The time-scale between maximum ram pressure and quenching is anticorrelated with impulsiveness, such that high impulsiveness corresponds to quenching time-scales <1 Gyr. Galaxies in low-mass groups ($$M_\mathrm{*,host}10^{7}{-}10^{9}\, \rm {M}_{\odot }$$) outside of MW haloes experience typical ram pressure only slightly lower than ram pressure on MW satellites, helping to explain effective quenching via group preprocessing. Ram pressure on MW satellites rises sharply with decreasing distance to the host, and, at a fixed physical distance, more recent pericentre passages are typically associated with higher ram pressure because of greater gas density in the inner host halo at late times. Furthermore, the ram pressure and gas density in the inner regions of Local Group-like paired host haloes are higher at small angles off the host galaxy disc compared to isolated hosts. The quiescent fraction of satellites within these low-latitude regions is also elevated in the simulations and observations, signaling possible anisotropic quenching via ram pressure around MW-mass hosts.  more » « less
Award ID(s):
2108962 1910346 1752913 2307327 2108230 2107772 2102729
PAR ID:
10456926
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3849-3864
Size(s):
p. 3849-3864
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $$M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($$M_{*}\lesssim 10^7\, \rm {M}_{\odot }$$) are mostly quiescent and higher mass satellites ($$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$) are mostly star forming, with intermediate-mass satellites ($$M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($$M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $$M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$, they do not generally reproduce SAGA’s turnover at lower masses. 
    more » « less
  2. While dwarf galaxies observed in the field are overwhelmingly star forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M$$_* \sim 10^8 \, \text{M}_\odot$$), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are $${\rm H}\, \rm{\small I}$$ deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on time-scales consistent with their likely infall times into NGC 3109's halo. It is currently believed that starvation is caused by 'weak' ram pressure that prevents low-density, weakly bound gas from being accreted on to the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely bound gaseous outflows from the dwarf satellites driven by their own star formation. 
    more » « less
  3. ABSTRACT While dwarf galaxies observed in the field are overwhelmingly star forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M$$_* \sim 10^8 \, \text{M}_\odot$$), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are $${\rm H}\, \rm{\small I}$$ deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on time-scales consistent with their likely infall times into NGC 3109’s halo. It is currently believed that starvation is caused by ‘weak’ ram pressure that prevents low-density, weakly bound gas from being accreted on to the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely bound gaseous outflows from the dwarf satellites driven by their own star formation. 
    more » « less
  4. ABSTRACT The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $$z \gtrsim 6$$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($$M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $$z=6\!-\!9$$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $$M_{\rm star}\sim 10^5\, \rm {M_\odot }$$ ($$\sim 10^9\, \rm {M_\odot }$$) had $$\approx 1$$ ($$\approx 30$$) progenitors at $$z\approx 7$$, and its main progenitor comprised $$\approx 100~{{\ \rm per\ cent}}$$ ($$\approx 10~{{\ \rm per\ cent}}$$) of the total stellar mass of all its progenitors at $$z\approx 7$$. We show that although only $$\sim 15~{{\ \rm per\ cent}}$$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $$z \sim 6 \!-\! 9$$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $$M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$$ at $$z \gtrsim 6$$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies. 
    more » « less
  5. ABSTRACT We study star formation histories (SFHs) of 500 dwarf galaxies (stellar mass $$M_\ast =10^5\!-\!10^9\, \rm {M}_\odot$$) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of ‘satellite versus central’ and ‘LG versus individual MW versus isolated dwarf central.’ Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the ‘near field’ have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated (true field) dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for M* = 106–$$10^7\, \rm {M}_\odot$$ but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG. 
    more » « less