Abstract PremiseThe Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole‐genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. MethodsWe constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. ResultsThe ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4–56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants inColobanthusandEremogone, along with other functional annotations. ConclusionsGene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep‐time evolutionary patterns in plants.
more »
« less
A consensus phylogenomic approach highlights paleopolyploid and rapid radiation in the history of Ericales
PremiseLarge genomic data sets offer the promise of resolving historically recalcitrant species relationships. However, different methodologies can yield conflicting results, especially when clades have experienced ancient, rapid diversification. Here, we analyzed the ancient radiation of Ericales and explored sources of uncertainty related to species tree inference, conflicting gene tree signal, and the inferred placement of gene and genome duplications. MethodsWe used a hierarchical clustering approach, with tree‐based homology and orthology detection, to generate six filtered phylogenomic matrices consisting of data from 97 transcriptomes and genomes. Support for species relationships was inferred from multiple lines of evidence including shared gene duplications, gene tree conflict, gene‐wise edge‐based analyses, concatenation, and coalescent‐based methods, and is summarized in a consensus framework. ResultsOur consensus approach supported a topology largely concordant with previous studies, but suggests that the data are not capable of resolving several ancient relationships because of lack of informative characters, sensitivity to methodology, and extensive gene tree conflict correlated with paleopolyploidy. We found evidence of a whole‐genome duplication before the radiation of all or most ericalean families, and demonstrate that tree topology and heterogeneous evolutionary rates affect the inferred placement of genome duplications. ConclusionsWe provide several hypotheses regarding the history of Ericales, and confidently resolve most nodes, but demonstrate that a series of ancient divergences are unresolvable with these data. Whether paleopolyploidy is a major source of the observed phylogenetic conflict warrants further investigation.
more »
« less
- Award ID(s):
- 1917146
- PAR ID:
- 10456936
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 107
- Issue:
- 5
- ISSN:
- 0002-9122
- Format(s):
- Medium: X Size: p. 773-789
- Size(s):
- p. 773-789
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread horizontal gene transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic data sets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic data sets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated data sets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic data sets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies. [Anomaly zone; bacteria; horizontal gene transfer; incomplete lineage sorting; Nostocales; phylogenomic conflict; rapid radiation; Rhizonema.]more » « less
-
PremiseCornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales. MethodsUsing the Angiosperms353 probe set and existing data sets, we generated phylogenomic data for 158 samples, representing all families in the Cornales, with intensive sampling in the Cornaceae. ResultsWe curated an average of 312 genes per sample, constructed maximum likelihood gene trees, and inferred a species tree using the summary approach implemented in ASTRAL‐III, a method statistically consistent with the multispecies coalescent model. ConclusionsThe species tree we constructed generally shows high support values and a high degree of concordance among individual nuclear gene trees. Relationships among families are largely congruent with previous molecular studies, except for the placement of the nyssoids and the Grubbiaceae‐Curtisiaceae clades. Furthermore, we were able to place Hydrostachyaceae within Cornales, and within Cornaceae, the monophyly of known morphogroups was well supported. However, patterns of gene tree discordance suggest potential ancient reticulation, gene flow, and/or ILS in the Hydrostachyaceae lineage and the early diversification ofCornus. Our findings reveal new insights into the diversification process across Cornales and demonstrate the utility of the Angiosperms353 probe set.more » « less
-
Ruane, Sara (Ed.)Abstract Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).]more » « less
-
Ferns are the second largest clade of vascular plants with over 10,000 species, yet the generation of genomic resources for the group has lagged behind other major clades of plants. Transcriptomic data have proven to be a powerful tool to assess phylogenetic relationships, using thousands of markers that are largely conserved across the genome, and without the need to sequence entire genomes. We assembled the largest nuclear phylogenetic dataset for ferns to date, including 2884 single-copy nuclear loci from 247 transcriptomes (242 ferns, five outgroups), and investigated phylogenetic relationships across the fern tree, the placement of whole genome duplications (WGDs), and gene retention patterns following WGDs. We generated a well-supported phylogeny of ferns and identified several regions of the fern phylogeny that demonstrate high levels of gene tree–species tree conflict, which largely correspond to areas of the phylogeny that have been difficult to resolve. Using a combination of approaches, we identified 27 WGDs across the phylogeny, including 18 large-scale events (involving more than one sampled taxon) and nine small-scale events (involving only one sampled taxon). Most inferred WGDs occur within single lineages (e.g., orders, families) rather than on the backbone of the phylogeny, although two inferred events are shared by leptosporangiate ferns (excluding Osmundales) and Polypodiales (excluding Lindsaeineae and Saccolomatineae), clades which correspond to the majority of fern diversity. We further examined how retained duplicates following WGDs compared across independent events and found that functions of retained genes were largely convergent, with processes involved in binding, responses to stimuli, and certain organelles over-represented in paralogs while processes involved in transport, organelles derived from endosymbiotic events, and signaling were under-represented. To date, our study is the most comprehensive investigation of the nuclear fern phylogeny, though several avenues for future research remain unexplored.more » « less
An official website of the United States government
