skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Use of neomycin as a structured amino‐containing side chain motif for phenanthroline‐based G‐quadruplex ligands and telomerase inhibitors
Abstract In this paper, we report the synthesis of a phenanthroline and neomycin conjugate (7). Compound7binds to a human telomeric G‐quadruplex (G1) with a higher affinity compared with its parent compounds (phenanthroline and neomycin), which is determined by several biophysical studies. Compound7shows good selectivity for G‐quadruplex (G4) DNA over duplex DNA. The binding of7withG1is predominantly enthalpy‐driven, and the binding stoichiometry of7withG1is one for the tight‐binding event as determined by ESI mass spectrometry. A plausible binding mode is a synergistic effect of end‐stacking and groove interactions, as indicated by docking studies. Compound7can inhibit human telomerase activity at low micromolar concentrations, which is more potent than previously reported 5‐substituted phenanthroline derivatives.  more » « less
Award ID(s):
1828179
PAR ID:
10456948
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Chemical Biology & Drug Design
Volume:
96
Issue:
5
ISSN:
1747-0277
Page Range / eLocation ID:
p. 1292-1304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Proliferating cell nuclear antigen (PCNA) is a homo‐trimeric protein complex that clamps around DNA to tether DNA polymerases to the template during replication and serves as a hub for many other interacting proteins. It regulates DNA metabolic processes and other vital cellar functions through the binding of proteins having short linear motifs (SLiMs) like the PIP‐box (PCNA‐interacting protein‐box) or the APIM (AlkB homolog 2 PCNA‐interacting motif) in the hydrophobic pocket where SLiMs bind. However, overproducing TbPCNA or human PCNA (hPCNA) in the pathogenic protistTrypanosoma bruceitriggers a dominant‐negative phenotype of arrested proliferation. The mechanism for arrestingT. bruceiproliferation requires the overproduced PCNA orthologs to have functional intact SLiM‐binding pocket. Sight‐directed mutagenesis studies showed thatT. bruceioverproducing PCNA variants with disrupted SLiM‐binding pockets grew normally. We hypothesized that chemically disrupting the SLiM‐binding pocket would restore proliferation inT. brucei, overproducing PCNA orthologs. Testing this hypothesis is the proof‐of‐concept for aT. brucei‐based PCNA screening assay. The assay design is to discover bioactive small molecules that restore proliferation inT. bruceistrains that overproduce PCNA orthologs, likely by disrupting interactions in the SLiM‐binding pocket. The pilot screen for this assay discovered two hit compounds that linked to predetermined PCNA targets. Compound#1, a known hPCNA inhibitor, had selective bioactivity to hPCNA overproduced inT. brucei, validating the assay. Compound#6had promiscuous bioactivity for hPCNA and TbPCNA but is the first compound discovered with bioactivity for inhibiting TbPCNA. 
    more » « less
  2. Three triorganotin (IV) cyclopentane carboxylates were synthesized and structurally characterized by in solid state by Fourier‐transform infrared spectroscopy and single crystal diffraction, and in solution by NMR (1H,13C, and119Sn) spectroscopy. The complexes were tested for their anticancer activity against MCF‐7 and HeLa cells along with normal BHK‐21 cells. As revealed by MTT assay, complex2was identified as the most potent derivative with an IC50value of 2.59 and 0.051 μM against HeLa and MCF‐7 cells, respectively. The results were compared with cisplatin as reference drug. Fluorescent microscopic studies using 4′,6‐diamidino‐2‐phenylindole (DAPI) and propidium iodide (PI) staining confirmed the occurrence of apoptosis in HeLa cells treated with the most active complex2. The complex2also triggered the release of lactate dehydrogenase (LDH) in treated HeLa and MCF‐7 cells whereas a luminescence assay displayed a remarkable increase in the activity of caspase‐9 and ‐3. Moreover, flow cytometric results revealed that complex2caused G0/G1 arrest in the treated HeLa cells. The complexes were further screened for DNA binding studies through UV‐vis spectroscopy and cyclic voltammetry. The high activity of complex2was attributed to its higher Lewis acidity as indicated by natural bond orbital (NBO) analysis. Theoretical modelling and molecular docking studies were also conducted to study the reactivity of complexes againstVEGFR 2 Kinase. 
    more » « less
  3. Abstract Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genusOrthoflaviviruscontains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target inOrthoflavivirusgenomes. 
    more » « less
  4. Abstract Both ligand binding and nanocavity can increase the stability of a biomolecular structure. Using mechanical unfolding in optical tweezers, here we found that a DNA origami nanobowl drastically increased the stability of a human telomeric G-quadruplex bound with a pyridostatin (PDS) ligand. Such a stability change is equivalent to >4 orders of magnitude increase (upper limit) in binding affinity (Kd: 490 nM → 10 pM (lower limit)). Since confined space can assist the binding through a proximity effect between the ligand-receptor pair and a nanoconfinement effect that is mediated by water molecules, we named such a binding as mechanochemical binding. After minimizing the proximity effect by using PDS that can enter or leave the DNA nanobowl freely, we attributed the increased affinity to the nanoconfinement effect (22%) and the proximity effect (78%). This represents the first quantification to dissect the effects of proximity and nanoconfinement on binding events in nanocavities. We anticipate these DNA nanoassemblies can deliver both chemical (i.e. ligand) and mechanical (i.e. nanocavity) milieus to facilitate robust mechanochemical binding in various biological systems. 
    more » « less
  5. null (Ed.)
    D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive. The structure of Pu27 is not available due to its polymorphism, but the G-quadruplex structures of its two shorter derivatives in complex with a ligand (Pu24/Phen-DC3 and Pu22/DC-34) are available and show significant structural variance as well as different ligand binding patterns in the 3′ region. Because D089-0563 shares the same scaffold as DC34 while having a significantly different scaffold from Phen-DC3, we picked Pu24 instead of Pu22 for this study in order to gain additional ligand binding insight. Using free ligand molecular dynamics binding simulations (33 μs), we probed the binding of D089-0563 to Pu24. Our clustering analysis identified three binding modes (top, side, and bottom) and subsequent MMPBSA binding energy analysis identified the top mode as the most thermodynamically stable. Our Markov State Model (MSM) analysis revealed that there are three parallel pathways for D089-0563 to the top mode from unbound state and that the ligand binding follows the conformational selection mechanism. Combining our predicted complex structures with the two experimental structures, it is evident that structural differences in the 3′ region between Pu24 and Pu22 lead to different binding behaviors despite having similar ligands; this also explains the different promoter activity caused by the two G-quadruplex sequences observed in a recent synthetic biology study. Based on interaction insights, 625 D089-0563 derivatives were designed and docked; 59 of these showed slightly improved docking scores. 
    more » « less