skip to main content


Title: Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events
Abstract

Torrential rain and extreme flooding caused by Atlantic hurricanes mobilize a large pool of organic matter (OM) from coastal forested watersheds in the southeastern United States. However, the mobilization of toxic metals such as mercury (Hg) that are associated with this vast pool of OM are rarely measured. This study aims to assess the variations of total Hg (THg) and methylmercury (MeHg) levels and the isotopic compositions of Hg in a blackwater river (Waccamaw River, SC, U.S.A.) during two recent extreme flooding events induced by Hurricane Joaquin (October 2015) and Hurricane Matthew (October 2016). We show that extreme flooding considerably increased filtered THg and MeHg concentrations associated with aromatic dissolved organic matter. During a 2‐month sampling window each year (October–November), we estimate that about 27% (2015) and 78% (2016) of the average amount of Hg deposited atmospherically during these 2 months was exported via the river. The isotopic composition of Hg in the river waters was changed only slightly by the substantial inputs of runoff from surrounding landscapes, in which mass‐dependent fractionation (as δ202Hg) decreased from −1.47 to −1.67‰ and mass‐independent fractionation (as ∆199Hg) decreased from −0.15 to −0.37‰. The slight variations in Hg isotopic composition during such extreme flooding events imply that sources of Hg in the river are nearly unchanged even under the very high wet deposition of Hg derived from the intensive rainfall. The majority of Hg exported by the river (74–85%) is estimated to have been derived from dry deposition to the watersheds. An increase in frequency and intensity of Atlantic hurricanes is expected in the next few decades due to further warming of ocean surface waters. We predict that increased hurricanes will mobilize more dry‐deposited Hg and in situ produced MeHg from these coastal watersheds where MeHg can be extensively bioaccumulated and biomagnified in the downstream aquatic food webs.

 
more » « less
NSF-PAR ID:
10456971
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
65
Issue:
9
ISSN:
0024-3590
Page Range / eLocation ID:
p. 2158-2169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As the role of the Greenland Ice Sheet in the Arctic mercury (Hg) budget draws scrutiny, it is crucial to understand mercury cycling in glacial fjords, which control exchanges with the ocean. We present full water column measurements of total mercury (THg) and methylmercury (MeHg) in Sermilik Fjord, a large fjord in southeast Greenland fed by multiple marine-terminating glaciers, whose circulation and water mass transformations have been extensively studied. We show that THg (0.23-1.1 pM) and MeHg (0.02-0.17 pM) concentrations are similar to those in nearby coastal waters, while the exported glacially-modified waters are relatively depleted in inorganic mercury (Hg(II)), suggesting that inflowing ocean waters from the continental shelf are the dominant source of mercury species to the fjord. We propose that sediments initially suspended in glacier meltwaters scavenge particle-reactive Hg(II) and are subsequently buried, making the fjord a net sink of oceanic mercury.

     
    more » « less
  2. Abstract

    Elemental mercury (Hg0) formation from other mercury species in seawater results from photoreduction and microbial activity, leading to possible evasion from seawater to overlying air. Microbial conversion of monomethylmercury (MeHg) to Hg0in seawater remains unquantified. A rapid radioassay method was developed using gamma‐emitting203Hg as a tracer to evaluate Hg0production from Hg(II) and MeHg in the low pM range. Bacterioplankton assemblages in Atlantic surface seawater and Long Island Sound water were found to rapidly produce Hg0, with production rate constants being directly related to bacterial biomass and independent of dissolved Hg(II) and MeHg concentrations. About 32% of Hg(II) and 19% of MeHg were converted to Hg0in 4 d in Atlantic surface seawater containing low‐bacterial biomass, and in Long Island Sound water with higher bacterial biomass, 54% of Hg(II) and 8% of MeHg were transformed to Hg0. Decreasing temperatures from 24°C to 4°C reduced Hg0production rates cell−1from Hg(II) 3.3 times as much as from a MeHg source. Because Hg0production rates were linearly related to microbial biomass and temperature, and microbial mercuric reductase was detected in our field samples, we inferred that microbial metabolic activities and enzymatic reactions primarily govern Hg0formation in subsurface waters where light penetration is diminished.

     
    more » « less
  3. Abstract

    Rapid warming in the Arctic threatens to destabilize mercury (Hg) deposits contained within soils in permafrost regions. Yet current estimates of the amount of Hg in permafrost vary by ∼4 times. Moreover, how Hg will be released to the environment as permafrost thaws remains poorly known, despite threats to water quality, human health, and the environment. Here we present new measurements of total mercury (THg) contents in discontinuous permafrost in the Yukon River Basin in Alaska. We collected riverbank and floodplain sediments from exposed banks and bars near the villages of Huslia and Beaver. Median THg contents were 49+13/−21ng THg g sediment−1and 39+16/−18ng THg g sediment−1for Huslia and Beaver, respectively (uncertainties as 15th and 85th percentiles). Corresponding THg:organic carbon ratios were 5.4+2.0/−2.4Gg THg Pg C−1and 4.2+2.4/−2.9Gg THg Pg C−1. To constrain floodplain THg stocks, we combined measured THg contents with floodplain stratigraphy. Trends of THg increasing with smaller sediment size and calculated stocks in the upper 1 m and 3 m are similar to those suggested for this region by prior pan-Arctic studies. We combined THg stocks and river migration rates derived from remote sensing to estimate particulate THg erosional and depositional fluxes as river channels migrate across the floodplain. Results show similar fluxes within uncertainty into the river from erosion at both sites (95+12/−47kg THg yr−1and 26+154/−13kg THg yr−1at Huslia and Beaver, respectively), but different fluxes out of the river via deposition in aggrading bars (60+40/−29kg THg yr−1and 10+5.3/−1.7kg THg yr−1). Thus, a significant amount of THg is liberated from permafrost during bank erosion, while a variable but generally lesser portion is subsequently redeposited by migrating rivers.

     
    more » « less
  4. Methylmercury (MeHg) is a neurotoxin that bioaccumulates to potentially harmful concentrations in Arctic and Subarctic marine predators and those that consume them. Monitoring and modeling MeHg bioaccumulation and biogeochemical cycling in the ocean requires an understanding of the mechanisms behind net mercury (Hg) methylation. The key functional gene pair for Hg methylation,hgcAB, is widely distributed throughout ocean basins and spans multiple microbial phyla. While multiple microbially mediated anaerobic pathways for Hg methylation in the ocean are known, the majority ofhgcAhomologs have been found in oxic subsurface waters, in contrast to other ecosystems. In particular, microaerophilicNitrospina, a genera of nitrite-oxidizing bacteria containing ahgcA-like sequence, have been proposed as a potentially important Hg methylator in the upper ocean. The objective of this work was therefore to examine the potential of nitrifiers as Hg methylators and quantify total Hg and MeHg across three Arctic and Subarctic seas (the Gulf of Alaska, the Bering Sea and the Chukchi Sea) in regions whereNitrospinaare likely present. In Spring 2021, samples for Hg analysis were obtained with a trace metal clean rosette across these seas. Mercury methylation rates were quantified in concert with nitrification rates using onboard incubation experiments with additions of stable isotope-labeled Hg and NH4+. A significant correlation between Hg methylation and nitrification was observed across all sites (R2= 0.34,p< 0.05), with the strongest correlation in the Chukchi Sea (R2= 0.99,p< 0.001).Nitrospina-specifichgcA-like genes were detected at all sites. This study, linking Hg methylation and nitrification in oxic seawater, furthers understanding of MeHg cycling in these high latitude waters, and the ocean in general. Furthermore, these studies inform predictions of how climate and human interactions could influence MeHg concentrations across the Arctic in the future.

     
    more » « less
  5. Abstract

    Sources of methylmercury (MeHg) in adult Pacific bluefin tuna (Thunnus orientalis, PBT) from the western North Pacific Ocean (WPO) were examined using mercury stable isotopes. Significant increases in δ202Hg and Δ199Hg values with PBT size and age, along with those of potential prey, indicate a shift in the source of MeHg accumulated by PBT as they age. Among adults from the WPO, this shift likely involves greater accumulation of MeHg from epipelagic prey in the Kuroshio extension in large vs. small and medium‐sized PBT. For all adults, little MeHg is accumulated in the spawning grounds near Taiwan. Significantly lower Δ199Hg/Δ201Hg ratios in adult PBT and their prey from the WPO than from the central and eastern North Pacific indicate different sources or transformations of MeHg prior to accumulation in the WPO food web than further east. Our results show that MeHg sources to oceanic food webs vary across the North Pacific Ocean and regionally within the WPO.

     
    more » « less