skip to main content


Title: Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events
Abstract

Torrential rain and extreme flooding caused by Atlantic hurricanes mobilize a large pool of organic matter (OM) from coastal forested watersheds in the southeastern United States. However, the mobilization of toxic metals such as mercury (Hg) that are associated with this vast pool of OM are rarely measured. This study aims to assess the variations of total Hg (THg) and methylmercury (MeHg) levels and the isotopic compositions of Hg in a blackwater river (Waccamaw River, SC, U.S.A.) during two recent extreme flooding events induced by Hurricane Joaquin (October 2015) and Hurricane Matthew (October 2016). We show that extreme flooding considerably increased filtered THg and MeHg concentrations associated with aromatic dissolved organic matter. During a 2‐month sampling window each year (October–November), we estimate that about 27% (2015) and 78% (2016) of the average amount of Hg deposited atmospherically during these 2 months was exported via the river. The isotopic composition of Hg in the river waters was changed only slightly by the substantial inputs of runoff from surrounding landscapes, in which mass‐dependent fractionation (as δ202Hg) decreased from −1.47 to −1.67‰ and mass‐independent fractionation (as ∆199Hg) decreased from −0.15 to −0.37‰. The slight variations in Hg isotopic composition during such extreme flooding events imply that sources of Hg in the river are nearly unchanged even under the very high wet deposition of Hg derived from the intensive rainfall. The majority of Hg exported by the river (74–85%) is estimated to have been derived from dry deposition to the watersheds. An increase in frequency and intensity of Atlantic hurricanes is expected in the next few decades due to further warming of ocean surface waters. We predict that increased hurricanes will mobilize more dry‐deposited Hg and in situ produced MeHg from these coastal watersheds where MeHg can be extensively bioaccumulated and biomagnified in the downstream aquatic food webs.

 
more » « less
NSF-PAR ID:
10456971
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
65
Issue:
9
ISSN:
0024-3590
Page Range / eLocation ID:
p. 2158-2169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Tocantins River contributes ∼5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ∼1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water.predominated the dissolved inorganic nitrogen pool, followed by, and, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72 × 106 t yr−1, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO2derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology.

     
    more » « less
  2. Abstract

    Extreme floods, including those expected to become more frequent in a warming world, may impact nutrient metabolism in streams. However, flood impacts on spatial and temporal variability of nutrient dynamics on large rivers (e.g., fourth order and higher) have been understudied. In 2016, Hurricane Matthew provided a unique opportunity to evaluate nitrate retention and processing on the Lumbee River, a blackwater stream in southeastern North Carolina. The 3,000+ km2watershed received as much as 400 mm of rain in 48 hr as the storm moved across the Atlantic Coastal Plain. Resulting floods in the watershed were the largest on record, based on more than 80 years of continuous streamflow measurements at the watershed outlet. We used a modified Lagrangian sampling method to collect water samples and supporting water quality data at multiple points along three reaches of the Lumbee River for several months before and after Hurricane Matthew. Samples were analyzed for nitrate‐nitrogen and used to estimate retention and areal uptake rates for multiple subsections within each reach. Although nitrate‐nitrogen concentrations did not change significantly after the flood, we found that the spatial variability of within‐reach retention and areal uptake increased substantially following the flood, evidenced by changes to within‐reach interquartile ranges. The spatial variability of areal uptake returned to pre‐flood levels approximately eight months after Hurricane Matthew, but retention variability remained elevated at the end of our field study. These results highlight the potential for extreme flooding to impact biogeochemical processes in large rivers long after flood waters subside.

     
    more » « less
  3. Abstract

    Dissolved organic matter (DOM) is a large and complex mixture of compounds with source inputs that differ with location, season, and environmental conditions. Here, we investigated drivers of DOM composition changes in a marsh‐dominated estuary off the southeastern United States. Monthly water samples were collected at a riverine and estuarine site from September 2015 to September 2016, and bulk, optical, and molecular analyses were conducted on samples before and after dark incubations. Results showed that river discharge was the primary driver changing the DOM composition at the mouth of the Altamaha River. For discharge higher than ~150 m3/s, dissolved organic carbon (DOC) concentrations and the terrigenous character of the DOM increased approximately linearly with river flow. For low discharge conditions, a clear signature of salt marsh‐derived compounds was observed in the river. At the head of Sapelo Sound, changes in DOM composition were primarily driven by river discharge and possibly by summer algae blooms. Microbial consumption of DOC was larger during periods of high discharge at both sites, potentially due to the higher mobilization and influx of fresh material to the system. The Georgia coast was hit by Hurricane Matthew in October 2016, which resulted in a large input of carbon to the estuary. The DOC concentration was ~2 times higher and DOM composition was more aromatic with a stronger terrigenous signature compared to the seasonal maximum observed earlier in the year during peak river discharge conditions. This suggests that extreme events notably impact DOM quantity and quality in estuarine regions.

     
    more » « less
  4. Hurricane Sandy, one of the largest Atlantic hurricanes on record, made landfall as an extratropical cyclone on the coast of New Jersey (29 October 2012) along a track almost perpendicular to the coast. Ten days later a northeaster caused heavy precipitation and elevated water levels along the coast. Two years of pre-storm monitoring and research in marshes of Barnegat Bay and the Delaware Estuary provided an opportunity to evaluate the impacts of Hurricane Sandy and the succeeding northeaster across the region. Peak water levels during Sandy ranged from 111 to 184 cm above the marsh surface in Barnegat Bay and 75 to 135 cm above the marsh surface in the Delaware Estuary. Despite widespread flooding and damage to coastal communities, the storm had modest and localized impacts on coastal marshes of New Jersey. Measurements made on the marsh platform illustrated localized responses to the storms including standing biomass removal, and changes in peak biomass the following summer. Marsh surface and elevation changes were variable within marshes and across the region. Localized elevation changes over the storm period were temporary and associated with subsurface processes. Over the long-term, there was no apparent impact of the 2012 storms, as elevations and regression slopes pre- and several months post-storm were not significant. Vegetation changes in the summer following the fall 2012 storms were also variable and localized within and among marshes. These results suggest that Hurricane Sandy and the succeeding northeaster did not have a widespread long-term impact on saline marshes in this region. Possible explanations are the dissipation of surge and wave energy from the barrier island in Barnegat Bay and the extreme water levels buffering the low-lying marsh surface from waves, winds, and currents, and carrying suspended loads past the short-statured marsh grasses to areas of taller vegetation and/or structure. These findings demonstrate that major storms that have substantial impacts on infrastructure and communities can have short-term localized effects on coastal marshes in the vicinity of the storm track.   
    more » « less
  5. In September 2018, Hurricane Florence caused extreme flooding in eastern North Carolina, USA, a region highly dense in concentrated animal production, especially swine and poultry. In this study, floodwater samples (n=96) were collected as promptly post-hurricane as possible and for up to approx. 30 days, and selectively enriched for Campylobacter using Bolton broth enrichment and isolation on mCCDA microaerobically at 42°C. Only one sample yielded Campylobacter , which was found to be Campylobacter jejuni with the novel genotype ST-2866. However, the methods employed to isolate Campylobacter readily yielded Arcobacter from 73.5% of the floodwater samples. The Arcobacter isolates failed to grow on Mueller-Hinton agar at 25, 30, 37 or 42°C microaerobically or aerobically, but could be readily subcultured on mCCDA at 42°C microaerobically. Multilocus sequence typing of 112 isolates indicated that all were Arcobacter butzleri. The majority (85.7%) of the isolates exhibited novel sequence types (STs), with 66 novel STs identified. Several STs, including certain novel ones, were detected in diverse waterbody types (channel, isolated ephemeral pools, floodplain) and from multiple watersheds, suggesting the potential for regionally-dominant strains. The genotypes were clearly partitioned into two major clades, one with high representation of human and ruminant isolates and another with an abundance of swine and poultry isolates. Surveillance of environmental waters and food animal production systems in this animal agriculture-dense region is needed to assess potential regional prevalence and temporal stability of the observed A. butzleri strains, as well as their potential association with specific types of food animal production. IMPORTANCE Climate change and associated extreme weather events can have massive impacts on the prevalence of microbial pathogens in floodwaters. However, limited data are available on foodborne zoonotic pathogens such as Campylobacter or Arcobacter in hurricane-associated floodwaters in rural regions with intensive animal production. With high density of intensive animal production as well as pronounced vulnerability to hurricanes, Eastern North Carolina presents unique opportunities in this regard. Our findings revealed widespread incidence of the emerging zoonotic pathogen Arcobacter butzleri in floodwaters from Hurricane Florence. We encountered high and largely unexplored diversity while also noting the potential for regionally-abundant and persistent clones. We noted pronounced partitioning of the floodwater genotypes in two source-associated clades. The data will contribute to elucidating the poorly-understood ecology of this emerging pathogen, and highlight the importance of surveillance of floodwaters associated with hurricanes and other extreme weather events for Arcobacte r and other zoonotic pathogens. 
    more » « less