skip to main content


Title: Distinct ecosystem types respond differentially to grazing exclosure
Abstract

Here, we evaluate the ecosystem functioning and the ecosystems services supply of different vegetation types (grasslands, shrublands and woodlands) under contrasting management regimes by comparing a protected area with the surrounding landscape, which has been subjected to human disturbance in the Eastern Hills of Uruguay. We propose, based on functional attributes and vegetation physiognomy, a State and Transition Model for the dynamics of the grassland–woodland mosaic. We used remote sensing techniques to: (i) develop a land‐cover map of the study area based on supervised Landsat imagery classification, and (ii) compare attributes of the ecosystem functioning (productivity and seasonality) and service supply derived from the Normalized Difference Vegetation Index (NDVI) images provided by the moderate resolution imaging spectroradiometer (MODIS) sensor. The land‐cover map showed that grasslands and shrublands were the most extensive land covers in the study area. These vegetation types presented higher productivity, seasonality and ecosystem service supply, outside the protected area than inside it. On the other hand, woodlands showed higher productivity, ecosystem service supply and lower seasonality inside the protected area than outside of it. Two axes represented the grassland–woodland mosaic dynamic: (i) the mean annual and (ii) the intra‐annual coefficient of variation of the NDVI. Our results highlight that conservation of grasslands, shrublands and woodlands require different management strategies based on particular disturbance regimes like moderate grazing and controlled burns. Moderate disturbances may help to preserve ecosystem services provisioning in grasslands and shrublands. On the contrary, woodland conservation requires a more rigorous regime of protection against disturbances.

 
more » « less
NSF-PAR ID:
10456984
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Austral Ecology
Volume:
45
Issue:
5
ISSN:
1442-9985
Page Range / eLocation ID:
p. 548-556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity. 
    more » « less
  2. The ability to move is essential for animals to find mates, escape predation, and meet energy and water demands. This is especially important across grazing systems where vegetation productivity can vary drastically between seasons or years. With grasslands undergoing significant changes due to climate change and anthropogenic development, there is an urgent need to determine the relative impacts of these pressures on the movement capacity of native herbivores. To measure these impacts, we fitted 36 white-bearded wildebeest ( Connochaetes taurinus ) with GPS collars across three study areas in southern Kenya (Amboseli Basin, Athi-Kaputiei Plains, and Mara) to test the relationship between movement (e.g., directional persistence, speed, home range crossing time) and gradients of vegetation productivity (i.e., NDVI) and anthropogenic disturbance. As expected, wildebeest moved the most (21.0 km day –1 ; CI: 18.7–23.3) across areas where movement was facilitated by low human footprint and necessitated by low vegetation productivity (Amboseli Basin). However, in areas with moderate vegetation productivity (Athi-Kaputiei Plains), wildebeest moved the least (13.3 km day –1 ; CI: 11.0–15.5). This deviation from expectations was largely explained by impediments to movement associated with a large human footprint. Notably, the movements of wildebeest in this area were also less directed than the other study populations, suggesting that anthropogenic disturbance (i.e., roads, fences, and the expansion of settlements) impacts the ability of wildebeest to move and access available resources. In areas with high vegetation productivity and moderate human footprint (Mara), we observed intermediate levels of daily movement (14.2 km day –1 ; CI: 12.3–16.1). Wildebeest across each of the study systems used grassland habitats outside of protected areas extensively, highlighting the importance of unprotected landscapes for conserving mobile species. These results provide unique insights into the interactive effects of climate and anthropogenic development on the movements of a dominant herbivore in East Africa and present a cautionary tale for the development of grazing ecosystems elsewhere. 
    more » « less
  3. Abstract

    Grassland ecosystems globally are being negatively impacted by changes in climate, disturbance regimes, nutrient flux, and consumer guilds. Changes in the trophic ecology of consumers can substantially influence local resources, contributing to shifting diversity, community turnover, and other processes of ecosystem change. Small mammals are diverse and abundant within grasslands and yet the impact of changing ecosystems on small mammals and the role of these mammals as consumers are still both under‐studied. We assessed small mammal resource use within grassland and woodland vegetation types that have resulted from landscape‐scale experimental disturbance through fire treatments within the tallgrass prairie ecoregion of the North American Great Plains. We predicted that resource use would vary significantly among grassland vs. woodland communities, in turn reducing the role of small mammals in contributing to future maintenance of native prairies. We sampled five dominant species of rodents across three years and multiple habitats. Using stable isotope analysis, we investigated isotopic niche area and overlap to infer variation in diet, both within and among species. Resource use shifted in bivariate isotopic space seasonally but not across years when combining all species and habitats. Inferred spring diet (based on fur samples) was highly diverse and overlapping. Summer isotopic values (based on liver tissue) in woody habitat treatments were narrower and overlapped less than within grassland habitats. Consumers generally shifted from C4herbivory to C3herbivory, or greater omnivory, when analyzing grassland, shrubland, and woodland habitats respectively. Within the tallgrass prairie ecosystem, small mammal populations in herbaceous‐dominated habitats use a broader variety of resources than small mammals in proximate woody‐dominated habitats. As native grasslands experience woody encroachment, small mammal assemblages experience turnover of dominant species and associated changes in diet. Ecosystem changes such as cessation of frequent fire resulting in more woody habitats may include reduced roles by native small mammals as consumers/dispersers/propagators of native grassland plants.

     
    more » « less
  4. Abstract

    Regional long‐term monitoring can enhance the detection of biodiversity declines associated with climate change, improving future projections by reducing reliance on space‐for‐time substitution and increasing scalability. Rodents are diverse and important consumers in drylands, regions defined by the scarcity of water that cover 45% of Earth's land surface and face increasingly drier and more variable climates. We analyzed abundance data for 22 rodent species across grassland, shrubland, ecotone, and woodland ecosystems in the southwestern USA. Two time series (1995–2006 and 2004–2013) coincided with phases of the Pacific Decadal Oscillation (PDO), which influences drought in southwestern North America. Regionally, rodent species diversity declined 20%–35%, with greater losses during the later time period. Abundance also declined regionally, but only during 2004–2013, with losses of 5% of animals captured. During the first time series (wetter climate), plant productivity outranked climate variables as the best regional predictor of rodent abundance for 70% of taxa, whereas during the second period (drier climate), climate best explained variation in abundance for 60% of taxa. Temporal dynamics in diversity and abundance differed spatially among ecosystems, with the largest declines in woodlands and shrublands of central New Mexico and Colorado. Which species were winners or losers under increasing drought and amplified interannual variability in drought depended on ecosystem type and the phase of the PDO. Fewer taxa were significant winners (18%) than losers (30%) under drought, but the identities of winners and losers differed among ecosystems for 70% of taxa. Our results suggest that the sensitivities of rodent species to climate contributed to regional declines in diversity and abundance during 1995–2013. Whether these changes portend future declines in drought‐sensitive consumers in the southwestern USA will depend on the climate during the next major PDO cycle.

     
    more » « less
  5. Riparian ecosystems fundamentally depend on groundwater, especially in dryland regions, yet their water requirements and sources are rarely considered in water resource management decisions. Until recently, technological limitations and data gaps have hindered assessment of groundwater influences on riparian ecosystem health at the spatial and temporal scales relevant to policy and management. Here, we analyze Sentinel-2–derived normalized difference vegetation index (NDVI;n= 5,335,472 observations), field-based groundwater elevation (n= 32,051 observations), and streamflow alteration data for riparian woodland communities (n= 22,153 polygons) over a 5-y period (2015 to 2020) across California. We find that riparian woodlands exhibit a stress response to deeper groundwater, as evidenced by concurrent declines in greenness represented by NDVI. Furthermore, we find greater seasonal coupling of canopy greenness to groundwater for vegetation along streams with natural flow regimes in comparison with anthropogenically altered streams, particularly in the most water-limited regions. These patterns suggest that many riparian woodlands in California are subsidized by water management practices. Riparian woodland communities rely on naturally variable groundwater and streamflow components to sustain key ecological processes, such as recruitment and succession. Altered flow regimes, which stabilize streamflow throughout the year and artificially enhance water supplies to riparian vegetation in the dry season, disrupt the seasonal cycles of abiotic drivers to which these Mediterranean forests are adapted. Consequently, our analysis suggests that many riparian ecosystems have become reliant on anthropogenically altered flow regimes, making them more vulnerable and less resilient to rapid hydrologic change, potentially leading to future riparian forest loss across increasingly stressed dryland regions.

     
    more » « less