skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot
Abstract The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine‐learning‐based experiment selection and high‐efficiency autonomous flow chemistry. With the self‐driving Artificial Chemist, made‐to‐measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision‐tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre‐trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge‐transfer strategy further enhances the optoelectronic properties of the in‐flow synthesized QDs (within the same resources as the no‐prior‐knowledge experiments) and mitigates the issues of batch‐to‐batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy.  more » « less
Award ID(s):
1902702
PAR ID:
10456991
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
30
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying the optimal formulation of emerging inorganic lead halide perovskite quantum dots (LHP QDs) with their vast colloidal synthesis universe and multiple synthesis/postsynthesis processing parameters is a challenging undertaking for material‐ and time‐intensive, batch synthesis strategies. Herein, a modular microfluidic synthesis strategy, integrated with an artificial intelligence (AI)‐guided decision‐making agent for intelligent navigation through the complex colloidal synthesis universe of LHP QDs with 10 individually controlled synthesis parameters and an accessible parameter space exceeding 2 × 107, is introduced. Utilizing the developed autonomous microfluidic experimentation strategy within a global learning framework, the optimal formulation of LHP QDs is rapidly identified through a two‐step colloidal synthesis and postsynthesis halide exchange reaction, for 10 different emission colors in less than 40 min per desired peak emission energy. Using two in‐series microfluidic reactors enables continuous bandgap engineering of LHP QDs via in‐line halide exchange reactions without the need for an intermediate washing step. Using an inert gas within a three‐phase flow format enables successful, self‐synchronized continuous delivery of halide salt precursor into moving droplets containing LHP QDs, resulting in accelerated closed‐loop formulation optimization and end‐to‐end continuous manufacturing of LHP QDs with desired optoelectronic properties. 
    more » « less
  2. Abstract: Colloidal all‐inorganic lead halide perovskite quantum dots (QDs) are high‐performance light‐emitting materials with size‐dependent optical properties and can be readily synthesized by mixing ionic precursors. However, the low formation energy of the perovskite lattice makes their growth too fast to control under regular reaction conditions. Diffusion‐regulated CsPbBr3 perovskite QD growth is reported on a nanometer‐sized liquid/liquid (L/L) interface supported in a micropipette tip without long‐chain organic ligands. The precursors are divided into two immiscible solutions across the L/L interface to avoid additional nucleation, and the QD growth kinetics are regulated by the constrained cationic diffusion field depending on the size of the micropipette tip. QDs with unprecedentedly small sizes (2.7 nm) are obtained due to the slowed‐down growth rates. The synthesis approach demonstrates the potential of micro‐controlled colloidal QD synthesis for mechanistic studies and micro‐fabrications. 
    more » « less
  3. Abstract Metal cation‐doped lead halide perovskite (LHP) quantum dots (QDs) with photoluminescence quantum yields (PLQYs) higher than unity, due to quantum cutting phenomena, are an important building block of the next‐generation renewable energy technologies. However, synthetic route exploration and development of the highest‐performing QDs for device applications remain challenging. In this work, Smart Dope is presented, which is a self‐driving fluidic lab (SDFL), for the accelerated synthesis space exploration and autonomous optimization of LHP QDs. Specifically, the multi‐cation doping of CsPbCl3QDs using a one‐pot high‐temperature synthesis chemistry is reported. Smart Dope continuously synthesizes multi‐cation‐doped CsPbCl3QDs using a high‐pressure gas‐liquid segmented flow format to enable continuous experimentation with minimal experimental noise at reaction temperatures up to 255°C. Smart Dope offers multiple functionalities, including accelerated mechanistic studies through digital twin QD synthesis modeling, closed‐loop autonomous optimization for accelerated QD synthetic route discovery, and on‐demand continuous manufacturing of high‐performing QDs. Through these developments, Smart Dope autonomously identifies the optimal synthetic route of Mn‐Yb co‐doped CsPbCl3QDs with a PLQY of 158%, which is the highest reported value for this class of QDs to date. Smart Dope illustrates the power of SDFLs in accelerating the discovery and development of emerging advanced energy materials. 
    more » « less
  4. The development of high quality, non-toxic ( i.e. , heavy-metal-free), and functional quantum dots (QDs) via ‘green’ and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag + cation exchange and Zn 2+ addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In 2 S 3 precursor nanocrystals, and the subsequent addition of Zn 2+ as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a ‘green’ and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of ‘green’, compositionally diverse QDs. 
    more » « less
  5. Abstract Hybrid graphene (Gr)–quantum dot (QD) photodetectors have shown ultrahigh photoresponsivity combining the strong light absorption of QDs with the high mobility of Gr. QDs absorb light and generate photocarriers that are efficiently transported by Gr. Typically, hybrid PbS–QD/graphene photodetectors operate by transferring photogenerated holes from the QDs to Gr while photoelectrons stay in the QDs inducing a photogating mechanism that achieves a responsivity of 6 × 107A W−1. However, despite such high gain, these systems have poor charge collection with quantum efficiency below 25%. Herein, a ZnO intermediate layer (PbS‐QD/ZnO/Gr) is introduced to improve charge collection by forming an effective p‐n PbS‐ZnO junction driving the electrons to the ZnO layer and then to Gr. This improves the photoresponsivity of the devices by nearly an order of magnitude with respect to devices without ZnO. Charge transfer to Gr is demonstrated by monitoring the change in Fermi level under illumination for conventional PbS‐QD/Gr and for ZnO intermediate PbS‐QD/ZnO/Gr devices. These results improve the capabilities of hybrid QD/Gr configurations for optoelectronic devices. 
    more » « less