skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot
Abstract

The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine‐learning‐based experiment selection and high‐efficiency autonomous flow chemistry. With the self‐driving Artificial Chemist, made‐to‐measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision‐tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre‐trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge‐transfer strategy further enhances the optoelectronic properties of the in‐flow synthesized QDs (within the same resources as the no‐prior‐knowledge experiments) and mitigates the issues of batch‐to‐batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy.

 
more » « less
Award ID(s):
1902702
NSF-PAR ID:
10456991
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
30
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. The development of high quality, non-toxic ( i.e. , heavy-metal-free), and functional quantum dots (QDs) via ‘green’ and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag + cation exchange and Zn 2+ addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In 2 S 3 precursor nanocrystals, and the subsequent addition of Zn 2+ as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a ‘green’ and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of ‘green’, compositionally diverse QDs. 
    more » « less
  3. Abstract

    Metal cation‐doped lead halide perovskite (LHP) quantum dots (QDs) with photoluminescence quantum yields (PLQYs) higher than unity, due to quantum cutting phenomena, are an important building block of the next‐generation renewable energy technologies. However, synthetic route exploration and development of the highest‐performing QDs for device applications remain challenging. In this work, Smart Dope is presented, which is a self‐driving fluidic lab (SDFL), for the accelerated synthesis space exploration and autonomous optimization of LHP QDs. Specifically, the multi‐cation doping of CsPbCl3QDs using a one‐pot high‐temperature synthesis chemistry is reported. Smart Dope continuously synthesizes multi‐cation‐doped CsPbCl3QDs using a high‐pressure gas‐liquid segmented flow format to enable continuous experimentation with minimal experimental noise at reaction temperatures up to 255°C. Smart Dope offers multiple functionalities, including accelerated mechanistic studies through digital twin QD synthesis modeling, closed‐loop autonomous optimization for accelerated QD synthetic route discovery, and on‐demand continuous manufacturing of high‐performing QDs. Through these developments, Smart Dope autonomously identifies the optimal synthetic route of Mn‐Yb co‐doped CsPbCl3QDs with a PLQY of 158%, which is the highest reported value for this class of QDs to date. Smart Dope illustrates the power of SDFLs in accelerating the discovery and development of emerging advanced energy materials.

     
    more » « less
  4. Abstract

    Perovskite quantum dots (QDs) preserve the attractive properties of perovskite bulk materials and present additional advantages, owing to their quantum confinement effect, leading to their suitability as an absorber in perovskite solar cells. In this Review, the issues and advantages of perovskite QDs are analyzed in the context of purification, device fabrication with perovskite QDs, light absorption, charge transport, and stability. In addition, promising strategies to enhance perovskite QDs and QD‐based solar cells are elucidated based on exchange chemistry (ion and ligand exchange), passivation engineering (ion and ligand passivation), and structure engineering (conventional/inverted, planar/mesoscopic and dimensionally graded structures). These discussions will give a clue to the further development of perovskite QDs and thus the advancement of QD‐based solar cells.

     
    more » « less
  5. Abstract

    Perovskite quantum dots (QDs) preserve the attractive properties of perovskite bulk materials and present additional advantages, owing to their quantum confinement effect, leading to their suitability as an absorber in perovskite solar cells. In this Review, the issues and advantages of perovskite QDs are analyzed in the context of purification, device fabrication with perovskite QDs, light absorption, charge transport, and stability. In addition, promising strategies to enhance perovskite QDs and QD‐based solar cells are elucidated based on exchange chemistry (ion and ligand exchange), passivation engineering (ion and ligand passivation), and structure engineering (conventional/inverted, planar/mesoscopic and dimensionally graded structures). These discussions will give a clue to the further development of perovskite QDs and thus the advancement of QD‐based solar cells.

     
    more » « less