Effective management of threatened and exploited species requires an understanding of both the genetic connectivity among populations and local adaptation. The Olympia oyster (
Species inhabiting marine environments face a wide range of environmental conditions that vary spatially across several orders of magnitude. The selective pressures that these conditions impose on marine organisms, in combination with potentially high rates of gene flow between distant populations, make it difficult to predict the extent to which these populations can locally adapt. Here, I identify how selection and gene flow influence the population genetic structure of the anemone
- PAR ID:
- 10456994
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 29
- Issue:
- 14
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 2550-2566
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Ostrea lurida ), patchily distributed from Baja California to the central coast of Canada, has a long history of population declines due to anthropogenic stressors. For such coastal marine species, population structure could follow a continuous isolation‐by‐distance model, contain regional blocks of genetic similarity separated by barriers to gene flow, or be consistent with a null model of no population structure. To distinguish between these hypotheses inO. lurida , 13,424 single nucleotide polymorphisms (SNP s) were used to characterize rangewide population structure, genetic connectivity, and adaptive divergence. Samples were collected across the species range on the west coast of North America, from southern California to Vancouver Island. A conservative approach for detecting putative loci under selection identified 235SNP s across 129GBS loci, which were functionally annotated and analyzed separately from the remaining neutral loci. While strong population structure was observed on a regional scale in both neutral and outlier markers, neutral markers had greater power to detect fine‐scale structure. Geographic regions of reduced gene flow aligned with known marine biogeographic barriers, such as Cape Mendocino, Monterey Bay, and the currents around Cape Flattery. The outlier loci identified as under putative selection included genes involved in developmental regulation, sensory information processing, energy metabolism, immune response, and muscle contraction. These loci are excellent candidates for future research and may provide targets for genetic monitoring programs. Beyond specific applications for restoration and management of the Olympia oyster, this study lends to the growing body of evidence for both population structure and adaptive differentiation across a range of marine species exhibiting the potential for panmixia. Computational notebooks are available to facilitate reproducibility and future open‐sourced research on the population structure ofO. lurida . -
Abstract Understanding the processes that shape genetic diversity by either promoting or preventing population divergence can help identify geographic areas that either facilitate or limit gene flow. Furthermore, broadly distributed species allow us to understand how biogeographic and ecogeographic transitions affect gene flow. We investigated these processes using genomic data in the Northern Alligator Lizard (Elgaria coerulea), which is widely distributed in Western North America across diverse ecoregions (California Floristic Province and Pacific Northwest) and mountain ranges (Sierra Nevada, Coastal Ranges, and Cascades). We collected single-nucleotide polymorphism data from 120 samples of E. coerulea. Biogeographic analyses of squamate reptiles with similar distributions have identified several shared diversification patterns that provide testable predictions for E. coerulea, including deep genetic divisions in the Sierra Nevada, demographic stability of southern populations, and recent post-Pleistocene expansion into the Pacific Northwest. We use genomic data to test these predictions by estimating the structure, connectivity, and phylogenetic history of populations. At least 10 distinct populations are supported, with mixed-ancestry individuals situated at most population boundaries. A species tree analysis provides strong support for the early divergence of populations in the Sierra Nevada Mountains and recent diversification into the Pacific Northwest. Admixture and migration analyses detect gene flow among populations in the Lower Cascades and Northern California, and a spatial analysis of gene flow identified significant barriers to gene flow across both the Sierra Nevada and Coast Ranges. The distribution of genetic diversity in E. coerulea is uneven, patchy, and interconnected at population boundaries. The biogeographic patterns seen in E. coerulea are consistent with predictions from co-distributed species.
-
Abstract In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep‐sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep‐sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios.
In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet
Lepetodrilus aff.schrolli . These vent sites are located in the Manus and Lau back‐arc basins, currently of great interest for deep‐sea mineral extraction. A total of 42 loci were sequenced from each individual using high‐throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific,L . aff.schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies. -
Abstract Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant,
Mimulus laciniatus , in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation‐based climate range. Contrary to expectations, within‐population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation‐driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high‐ and low‐elevation range limits and were inconsistent with two common centre‐edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre‐edge dynamics, is an important range‐wide factor structuringM. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed. -
Abstract The fluid nature of the ocean, combined with planktonic dispersal of marine larvae, lowers physical barriers to gene flow. However, divergence can still occur despite gene flow if strong selection acts on populations occupying different ecological niches. Here, we examined the population genomics of an ectoparasitic snail,
Coralliophila violacea (Kiener 1836), that specializes onPorites corals in the Indo‐Pacific. Previous genetic analyses revealed two sympatric lineages associated with different coral hosts. In this study, we examined the mechanisms promoting and maintaining the snails’ adaptation to their coral hosts. Genome‐wide single nucleotide polymorphism (SNP) data from type II restriction site‐associated DNA (2b‐RAD) sequencing revealed two differentiated clusters ofC. violacea that were largely concordant with coral host, consistent with previous genetic results. However, the presence of some admixed genotypes indicates gene flow from one lineage to the other. Combined, these results suggest that differentiation between host‐associated lineages ofC. violacea is occurring in the face of ongoing gene flow, requiring strong selection. Indeed, 2.7% of all SNP loci were outlier loci (73/2,718), indicative of divergence with gene flow, driven by adaptation of eachC. violacea lineage to their specific coral hosts.