skip to main content


Title: Retention of poly( N ‐isopropylacrylamide) thin films on polycarbonate via polymer interdiffusion
Abstract

This study explored the possibility of polymer interdiffusion for retaining thermoresponsive poly(N‐isopropylacrylamide) (pNIPAAm) on polycarbonate (PC). It was hypothesized that interdiffusion could be facilitated either by increasing the annealing temperature or by treating PC using air plasma (AP) and ultra‐violet ozone (UVO). The results showed that increasing annealing temperature only moderately improved pNIPAAm retention. Treating PC with AP led to an increase in surface‐active groups and a greatly enhanced retention of pNIPAAm. UVO treatment, however, severely damaged the PC layer with no noticeable enhancement on pNIPAAm retention. The retained pNIPAAm films on PC exhibited thermoresponsive behavior as evidenced by water contact angle and desired cell attachment/detachment behaviors. These results illustrate the simplicity of using polymer interdiffusion to successfully retain pNIPAAm films on a polymer, and the resulting substrates would be less expensive and more versatile than those retained on brittle supports (e.g., glass) for applications that require resilient thermoresponsive substrates.

 
more » « less
Award ID(s):
1836429
NSF-PAR ID:
10457046
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
58
Issue:
19
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2728-2740
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Straining the vanadium dimers along the rutilec‐axis can be used to tune the metal‐to‐insulator transition (MIT) of VO2but has thus far been limited to TiO2substrates. In this work VO2/MgF2epitaxial films are grown via molecular beam epitaxy (MBE) to strain engineer the transition temperature (TMIT). First, growth parameters are optimized by varying the synthesis temperature of the MgF2(001) substrate (TS) using a combination of X‐ray diffraction techniques, temperature dependent transport, and soft X‐ray photoelectron spectroscopy. It is determined thatTSvalues greater than 350 °C induce Mg and F interdiffusion and ultimately the relaxation of the VO2layer. Using the optimized growth temperature, VO2/MgF2(101) and (110) films are then synthesized. The three film orientations display MITs with transition temperatures in the range of 15–60 °C through precise strain engineering.

     
    more » « less
  2. null (Ed.)
    Alignment of highly anisotropic nanomaterials in a polymer matrix can yield nanocomposites with unique mechanical and transport properties. Conventional methods of nanocomposite film fabrication are not well-suited for manufacturing composites with very high concentrations of anisotropic nanomaterials, potentially limiting the widespread implementation of these useful structures. In this work, we present a scalable approach to fabricate polymer-infiltrated nanoplatelet films (PINFs) based on flow coating and capillary rise infiltration (CaRI) and study the processing–structure–property relationship of these PINFs. We show that films with high aspect ratio (AR) gibbsite (Al (OH) 3 ) nanoplatelets (NPTs) aligned parallel to the substrate can be prepared using a flow coating process. NPTs are highly aligned with a Herman's order parameter of 0.96 and a high packing fraction >80 vol%. Such packings show significantly higher fracture toughness compared to low AR nanoparticle (NP) packings. By depositing NPTs on a polymer film and subsequently annealing the bilayer above the glass transition temperature of the polymer, polymer infiltrates into the tortuous NPT packings though capillarity. We observe larger enhancement in the modulus, hardness and scratch resistance of NPT films upon polymer infiltration compared to NP packings. The excellent mechanical properties of such films benefit from both thermally promoted oxide bridge formation between NPTs as well as polymer infiltration increasing the strength of NPT contacts. Our approach is widely applicable to highly anisotropic nanomaterials and allows the generation of mechanically robust polymer nanocomposite films for a diverse set of applications. 
    more » « less
  3. Abstract

    An overlooked factor affecting stability: the residual stresses in perovskite films, which are tensile and can exceed 50 MPa in magnitude, a value high enough to deform copper, is reported. These stresses provide a significant driving force for fracture. Films are shown to be more unstable under tensile stress—and conversely more stable under compressive stress—when exposed to heat or humidity. Increasing the formation temperature of perovskite films directly correlates with larger residual stresses, a result of the high thermal expansion coefficient of perovskites. Specifically, this tensile stress forms upon cooling to room temperature, as the substrate constrains the perovskite from shrinking. No evidence of stress relaxation is observed, with the purely elastic film stress attributed to the thermal expansion mismatch between the perovskite and substrate. Additionally, the authors demonstrate that using a bath conversion method to form the perovskite film at room temperature leads to low stress values that are unaffected by further annealing, indicating complete perovskite formation prior to annealing. It is concluded that reducing the film stress is a novel method for improving perovskite stability, which can be accomplished by lower formation temperatures, flexible substrates with high thermal expansion coefficients, and externally applied compressive stress after fabrication.

     
    more » « less
  4. Electrodeposited Cu–Sb thin films on Cu and Ni substrates are investigated as alloy anodes for Li-ion batteries to elucidate the effects of both the film composition and substrate interactions on anode cycling stability and lifetime. Thin films of composition Cu x Sb (0 < x < 2) exhibit the longest cycle lifetimes nearest x = 1. Additionally, the Cu–Sb films exhibit shorter cycle lifetimes when electrodeposited onto Cu substrates when compared to equivalent films on Ni substrates. Ex situ characterization and differential capacity analysis of the anodes reveal that significant interdiffusion occurs during cycling between pure Sb films and Cu substrates. The great extent of interdiffusion results in mechanical weakening of the film–substrate interface that exacerbates film delamination and decreases cycle lifetimes of Cu–Sb films on Cu substrates regardless of the film's composition. The results presented here demonstrate that the composition of the anode alone is not the most important predictor of long term cycle stability; the composition coupled with the identity of the substrate is key. These interactions are critical to understand in the design of high capacity, large volume change materials fabricated without the need for additional binders. 
    more » « less
  5. Abstract

    Oxygen vacancy is known to play an important role for the physical properties in SrTiO3(STO)-based systems. On the surface, rich structural reconstructions had been reported owing to the oxygen vacancies, giving rise to metallic surface states and unusual surface phonon modes. More recently, an intriguing phenomenon of a huge superconducting transition temperature enhancement was discovered in a monolayer FeSe on STO substrate, where the surface reconstructed STO (SR-STO) may play a role. In this work, SR-STO substrates were prepared via thermal annealing in ultra-high vacuum followed by low energy electron diffraction analyses on surface structures. Thin Nb films with different thicknesses (d) were then deposited on the SR-STO. The detailed studies of the magnetotransport and superconducting property in the Al(1 nm)/Nb(d)/SR-STO samples revealed a large positive magnetoresistance and a pronounced resistance peak near the onset of the resistive superconducting transition in the presence of an in-plane field. Remarkably, the amplitude of the resistance peak increases with increasing fields, reaching a value of nearly 57% of the normal state resistance at 9 T. Such resistance peaks were absent in the control samples of Al(1 nm)/Nb(d)/STO and Al(1 nm)/Nb(d)/SiO2. Combining with DFT calculations for SR-STO, we attribute the resistance peak to the interface resistance from the proximity coupling of the superconducting niobium to the field-enhanced long-range magnetic order in SR-STO that arises from the spin-polarized in-gap states due to oxygen vacancies.

     
    more » « less