skip to main content


Title: Putting a new spin on insect jumping performance using 3D modeling and computer simulations of spotted lanternfly nymphs

How animals jump and land on diverse surfaces is ecologically important and relevant to bioinspired robotics. Here we describe the jumping biomechanics of the planthopper Lycorma delicatula (spotted lanternfly), an invasive insect in the US that jumps frequently for dispersal, locomotion, and predator evasion. High-speed video was used to analyze jumping by spotted lanternfly nymphs from take-off to impact on compliant surfaces. These insects used rapid hindleg extensions to achieve high take-off speeds (2.7-3.4 m s−1) and accelerations (800-1000 m s−2), with midair trajectories consistent with ballistic motion without drag forces or steering. Despite rotating rapidly (5-45 Hz) about time-varying axes of rotation, they landed successfully in 58.9% of trials. They also attained the most successful impact orientation significantly more often than predicted by chance, consistent with their using attitude control. Notably, these insects were able to land successfully when impacting surfaces at all angles, pointing to the importance of collisional recovery behaviors. To further understand their rotational dynamics, we created realistic 3D rendered models of spotted lanternflies and used them to compute their mechanical properties during jumping. Computer simulations based on these models and drag torques estimated from fits to tracked data successfully predicted several features of the measured rotational kinematics. This analysis showed that the rotational inertia of spotted lanternfly nymphs is predominantly due to their legs, enabling them to use posture changes as well as drag torque to control their angular velocity, and hence their orientation, thereby facilitating predominately successful landings when jumping.

 
more » « less
NSF-PAR ID:
10457069
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Warming has broad and often nonlinear impacts on organismal physiology and traits, allowing it to impact species interactions like predation through a variety of pathways that may be difficult to predict. Predictions are commonly based on short‐term experiments and models, and these studies often yield conflicting results depending on the environmental context, spatiotemporal scale, and the predator and prey species considered. Thus, the accuracy of predicted changes in interaction strength, and their importance to the broader ecosystems they take place in, remain unclear. Here, we attempted to link one such set of predictions generated using theory, modeling, and controlled experiments to patterns in the natural abundance of prey across a broad thermal gradient. To do so, we first predicted how warming would impact a stage‐structured predator–prey interaction in riverine rock pools betweenPantalaspp. dragonfly nymph predators andAedes atropalpusmosquito larval prey. We then described temperature variation across a set of hundreds of riverine rock pools (n = 775) and leveraged this natural gradient to look for evidence for or against our model's predictions. Our model's predictions suggested that warming should weaken predator control of mosquito larval prey by accelerating their development and shrinking the window of time during which aquatic dragonfly nymphs could consume them. This was consistent with data collected in rock pool ecosystems, where the negative effects of dragonfly nymph predators on mosquito larval abundance were weaker in warmer pools. Our findings provide additional evidence to substantiate our model‐derived predictions while emphasizing the importance of assessing similar predictions using natural gradients of temperature whenever possible.

     
    more » « less
  2. ABSTRACT Lantern bugs are amongst the largest of the jumping hemipteran bugs, with body lengths reaching 44 mm and masses reaching 0.7 g. They are up to 600 times heavier than smaller hemipterans that jump powerfully using catapult mechanisms to store energy. Does a similar mechanism also propel jumping in these much larger insects? The jumping performance of two species of lantern bugs (Hemiptera, Auchenorrhyncha, family Fulgoridae) from India and Malaysia was therefore analysed from high-speed videos. The kinematics showed that jumps were propelled by rapid and synchronous movements of both hind legs, with their trochantera moving first. The hind legs were 20–40% longer than the front legs, which was attributable to longer tibiae. It took 5–6 ms to accelerate to take-off velocities reaching 4.65 m s−1 in the best jumps by female Kalidasa lanata. During these jumps, adults experienced an acceleration of 77 g, required an energy expenditure of 4800 μJ and a power output of 900 mW, and exerted a force of 400 mN. The required power output of the thoracic jumping muscles was 21,000 W kg−1, 40 times greater than the maximum active contractile limit of muscle. Such a jumping performance therefore required a power amplification mechanism with energy storage in advance of the movement, as in their smaller relatives. These large lantern bugs are near isometrically scaled-up versions of their smaller relatives, still achieve comparable, if not higher, take-off velocities, and outperform other large jumping insects such as grasshoppers. 
    more » « less
  3. Synopsis Jumping is an important form of locomotion, and animals employ a variety of mechanisms to increase jump performance. While jumping is common in insects generally, the ability to jump is rare among ants. An exception is the Neotropical ant Gigantiops destructor (Fabricius 1804) which is well known for jumping to capture prey or escape threats. Notably, this ant begins a jump by rotating its abdomen forward as it takes off from the ground. We tested the hypotheses that abdominal rotation is used to either provide thrust during takeoff or to stabilize rotational momentum during the initial airborne phase of the jump. We used high speed videography to characterize jumping performance of G. destructor workers jumping between two platforms. We then anesthetized the ants and used glue to prevent their abdomens from rotating during subsequent jumps, again characterizing jump performance after restraining the abdomen in this manner. Our results support the hypothesis that abdominal rotation provides additional thrust as the maximum distance, maximum height, and takeoff velocity of jumps were reduced by restricting the movement of the abdomen compared with the jumps of unmanipulated and control treatment ants. In contrast, the rotational stability of the ants while airborne did not appear to be affected. Changes in leg movements of restrained ants while airborne suggest that stability may be retained by using the legs to compensate for changes in the distribution of mass during jumps. This hypothesis warrants investigation in future studies on the jump kinematics of ants or other insects. 
    more » « less
  4. null (Ed.)
    Finite-fault models for the 2010 M w 8.8 Maule, Chile earthquake indicate bilateral rupture with large-slip patches located north and south of the epicenter. Previous studies also show that this event features significant slip in the shallow part of the megathrust, which is revealed through correction of the forward tsunami modeling scheme used in tsunami inversions. The presence of shallow slip is consistent with the coseismic seafloor deformation measured off the Maule region adjacent to the trench and confirms that tsunami observations are particularly important for constraining far-offshore slip. Here, we benchmark the method of Optimal Time Alignment (OTA) of the tsunami waveforms in the joint inversion of tsunami (DART and tide-gauges) and geodetic (GPS, InSAR, land-leveling) observations for this event. We test the application of OTA to the tsunami Green’s functions used in a previous inversion. Through a suite of synthetic tests we show that if the bias in the forward model is comprised only of delays in the tsunami signals, the OTA can correct them precisely, independently of the sensors (DART or coastal tide-gauges) and, to the first-order, of the bathymetric model used. The same suite of experiments is repeated for the real case of the 2010 Maule earthquake where, despite the results of the synthetic tests, DARTs are shown to outperform tide-gauges. This gives an indication of the relative weights to be assigned when jointly inverting the two types of data. Moreover, we show that using OTA is preferable to subjectively correcting possible time mismatch of the tsunami waveforms. The results for the source model of the Maule earthquake show that using just the first-order modeling correction introduced by OTA confirms the bilateral rupture pattern around the epicenter, and, most importantly, shifts the inferred northern patch of slip to a shallower position consistent with the slip models obtained by applying more complex physics-based corrections to the tsunami waveforms. This is confirmed by a slip model refined by inverting geodetic and tsunami data complemented with a denser distribution of GPS data nearby the source area. The models obtained with the OTA method are finally benchmarked against the observed seafloor deformation off the Maule region. We find that all of the models using the OTA well predict this offshore coseismic deformation, thus overall, this benchmarking of the OTA method can be considered successful. 
    more » « less
  5. Abstract The process of evapotranspiration transfers liquid water from vegetation and soil surfaces to the atmosphere, the so-called latent heat flux ( Q LE ), and modulates the Earth’s energy, water, and carbon cycle. Vegetation controls Q LE by regulating leaf stomata opening (surface resistance r s in the Big Leaf approach) and by altering surface roughness (aerodynamic resistance r a ). Estimating r s and r a across different vegetation types is a key challenge in predicting Q LE . We propose a hybrid approach that combines mechanistic modeling and machine learning for modeling Q LE . The hybrid model combines a feed-forward neural network which estimates the resistances from observations as intermediate variables and a mechanistic model in an end-to-end setting. In the hybrid modeling setup, we make use of the Penman–Monteith equation in conjunction with multi-year flux measurements across different forest and grassland sites from the FLUXNET database. This hybrid model setup is successful in predicting Q LE , however, this approach leads to equifinal solutions in terms of estimated physical parameters. We follow two different strategies to constrain the hybrid model and therefore control for the equifinality that arises when the two resistances are estimated simultaneously. One strategy is to impose an a priori constraint on r a based on mechanistic assumptions (theory-driven strategy), while the other strategy makes use of more observational data and adds a constraint in predicting r a through multi-task learning of both latent and sensible heat flux ( Q H ; data-driven strategy) together. Our results show that all hybrid models predict the target variables with a high degree of success, with R 2 = 0.82–0.89 for grasslands and R 2 = 0.70–0.80 for forest sites at the mean diurnal scale. The predicted r s and r a show strong physical consistency across the two regularized hybrid models, but are physically implausible in the under-constrained hybrid model. The hybrid models are robust in reproducing consistent results for energy fluxes and resistances across different scales (diurnal, seasonal, and interannual), reflecting their ability to learn the physical dependence of the target variables on the meteorological inputs. As a next step, we propose to test these heavily observation-informed parameterizations derived through hybrid modeling as a substitute for ad hoc formulations in Earth system models. 
    more » « less