skip to main content


Title: The effect of submicron grain size on thermal stability and mechanical properties of high‐entropy carbide ceramics
Abstract

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramics (HEC) with a submicron grain size of 400 to 600 nm were fabricated by spark plasma sintering using a two‐step sintering process. Both X‐ray and neutron diffractions confirmed the formation of single‐phase with rock salt structure in the as‐fabricated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C samples. The effect of submicron grain size on the thermal stability and mechanical properties of HEC was investigated. The grain growth kinetics in the fine‐grained HEC was small at 1300 and 1600°C, suggesting high thermal stability that was possibly related to the compositional complexity and sluggish diffusion in HEC. Compared to the coarse‐grain HEC with a grain size of 16.5 µm, the bending strength and fracture toughness of fine‐grained HEC were 25% and 20% higher respectively. The improvement of mechanical properties in fine‐grained HEC may be attributed to micromechanistic mechanisms such as crack deflection.

 
more » « less
NSF-PAR ID:
10457093
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
103
Issue:
8
ISSN:
0002-7820
Page Range / eLocation ID:
p. 4463-4472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The direct selective laser sintering (SLS) process was successfully demonstrated for additive manufacturing of high-entropy carbide ceramics (HECC), in which a Yb fiber laser was employed for ultrafast (in seconds) reactive sintering of HECC specimens from a powder mixture of constitute monocarbides. A single-phase non-equiatomic HECC was successfully formed in the 4-HECC specimen with a uniform distribution of Zr, Nb, Hf, Ta, and C. In contrast, a three-layer microstructure was formed in the 5-HECC specimen with five metal elements (Zr, Nb, Hf, Ta and Ti), consisting of a TiC-rich top layer, a Zr–Hf–C enriched intermediate layer, and a non-equiatomic Zr–Ta–Nb–Hf–C HECC layer. Vickers hardness of 4- and 5-HECC specimens were 22.2 and 21.8 GPa, respectively, on the surface. These findings have important implications on the fundamental mechanisms governing interactions between laser and monocarbide powders to form a solid solution of HECCs during SLS.

    Graphical abstract

     
    more » « less
  2. Microwave-induced plasma was used to anneal precursor powders containing five metal oxides with carbon and boron carbide as reducing agents, resulting in high entropy boride ceramics. Measurements of hardness, phase structure, and oxidation resistance were investigated. Plasma annealing for 45 min in the range of 1500–2000 °C led to the formation of predominantly single-phase (Hf, Zr, Ti, Ta, Mo)B2 or (Hf, Zr, Nb, Ta, Mo)B2 hexagonal structures characteristic of high entropy borides. Oxidation resistance for these borides was improved by as much as a factor of ten when compared to conventional commercial diborides. Vickers and nanoindentation hardness measurements show the indentation size effect and were found to be as much as 50% higher than that reported for the same high entropy boride configuration made by other methods, with average values reaching up to 38 GPa (for the highest Vickers load of 200 gf). Density functional theory calculations with a partial occupation method showed that (Hf, Zr, Ti, Ta, Mo)B2 has a higher hardness but a lower entropy forming ability compared to (Hf, Zr, Nb, Ta, Mo)B2, which agrees with the experiments. Overall, these results indicate the strong potential of using microwave-induced plasma as a novel approach for synthesizing high entropy borides. 
    more » « less
  3. Abstract

    Two advanced manufacturing processes, spark plasma sintering (SPS) and selective laser sintering (SLS), have been developed for synthesis of (Zr,Nb,Ta,Ti,W)C compositionally complex carbide (CCC) via reactive sintering of a powder mixture of constitute monocarbides. X‐ray diffraction analysis confirmed that the single‐phase CCC can be formed by both SPS and SLS. While a homogenous microstructure with uniform metal element distributions was developed during SPS, three‐layer microstructures with a thin TiC‐rich layer and two TaC‐rich layers along with a TiO2‐rich surface layer containing W nanoparticles were formed during SLS. In addition, cellular structures with W, Zr, and Ti element segregation and dislocations on cell boundaries were observed in the SLS‐CCC sample, indicating the effect of nonequilibrium conditions on microstructure formation during laser melting followed by rapid cooling and solidification process. Compared to the SPS‐CCC sample, the SLS‐CCC showed enhanced hardness and reduced thermal conductivity, which may be related to their unique cellular structures.

     
    more » « less
  4. The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17and Hf6Ta2O17were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5and Ta2O5) led us to hypothesize the A6B2O17family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17and A6Ta2O17.The results indicate that electrons are involved in conduction in A6Nb2O17while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be:(i)Nb(Ta)4+- oxygen vacancy associate formation/dissociation,(ii)formation of oxygen/oxygen vacancy complexes(iii)ordering/disordering of oxygen vacancies and/or(iv)oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity.

     
    more » « less
  5. Abstract

    Polymer‐derived amorphous SiCN has excellent high‐temperature stability and properties. To reduce the shrinkage during pyrolysis and to improve the high‐temperature oxidation resistance, Y2O3was added as a filler. In this study, polymer‐derived SiCN–Y2O3composites were fabricated by mixing a polymeric precursor of SiCN with Y2O3submicron powders in different ratios. The mixtures were cross‐linked and pyrolyzed in argon. SiCN–Y2O3composites were processed using field‐assisted sintering technology at 1350°C for 5 min under vacuum. Dense SiCN–Y2O3composite pellets were successfully made with relative density higher than 98% and homogeneous microstructure. Due to low temperature and short time of the heat‐treatment, the grain growth of Y2O3was substantially inhibited. The Y2O3grain size was ∼1 μm after sintering. The composites’ heat capacity, thermal diffusivity, and thermal expansion coefficients were characterized as a function of temperature. The thermal conductivity of the composites ceramics decreased as the amount of amorphous SiCN increased and the coefficient of thermal expansion (CTE) of the composites increased with Y2O3content. However, the thermal conductivity and CTE did not follow the rule of mixture. This is likely due to the partial oxidation of SiCN and the resultant impurity phases such as Y2SiO5, Y2Si2O7, and Y4.67(SiO4)3O.

     
    more » « less