Abstract Magnetism, redness, and Fe oxides are indicators of pedoclimatic conditions. However, uncertainties with observing how Fe oxides form within soils has led to debates about relationships between magnetic mineral assemblages, temperature, and rainfall. To address these issues, Fe oxides from the equatorial tropics of Kenya were examined in Pliocene soils that developed under orbital forcing of the monsoon. Results demonstrate that with warm‐wet monsoons, ferrimagnetic production was increased and correlated with hematite concentrations, in accordance with expectations that ferrimagnetic and hematite minerals codevelop from amorphous Fe oxides. With cool‐dry monsoons, hematite concentrations increased but ferrimagnetic production decreased and decoupled from hematite development. These findings suggest that decreased rainfall rather than temperature change favored the dehydration step required to catalyze hematite enrichment within soils. This study explains Fe oxides origins under variable monsoonal climates and recognizes moisture changes in comparison to temperature as stronger controls on the production of soil‐formed hematite.
more »
« less
Constraints on Fe‐Oxide Formation in Monsoonal Vertisols of Pliocene Kenya Using Rock Magnetism and Spectroscopy
Abstract Pliocene Vertisols from the Turkana Basin of northwest Kenya (~4°N latitude) have been examined using isothermal remanent magnetization (IRM) experiments, susceptibility measurements, and diffuse reflectance spectroscopy. The complete vertical profile of each paleosol is almost intact, measuring >2 m in thickness and being strongly magnetic (IRM at 1.0T ranges from 4 to 25 × 10−3Am2/kg). Downprofile changes to the proxy indicators suggest uninterrupted pedodevelopment and a lack of stratigraphic inversions caused by argilli‐pedoturbation. Magnetic minerals consist of hematite to a lesser degree, and pedogenic ferrimagnets derived from moisture cycles that were controlled by monsoonal rainfall. Basal pedogenic zones of the paleosols are magnetically intense, and preserve the greatest slickenside development indicating pronounced seasonal wetting and drying. These observations indicate a deeper dry season water table as compared to poorly drained temperate/tropical Vertisols, which suffer reductive dissolution of Fe oxides in basal pedogenic horizons associated with weak magnetic intensities. Magnetic susceptibilities and the well‐represented presence of fine pedogenic ferrimagnets suggest that Pliocene rainfall was greater than the local modern rate of 200 mm/year and may have been within the range of 500–1,000 mm/year. The study highlights the need to expand the database on Vertisols Fe oxides and magnetism, especially considering the anomalously dry and bimodal rainfall seasonality of East Africa.
more »
« less
- Award ID(s):
- 1818805
- PAR ID:
- 10457147
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 20
- Issue:
- 11
- ISSN:
- 1525-2027
- Page Range / eLocation ID:
- p. 4998-5013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Unmixing of remanent magnetization curves, either isothermal remanent magnetization (IRM) or backfield IRM, is widely used in rock magnetic and environmental magnetic studies to discriminate between magnetic coercivity components of different origins. However, the wide range of physical properties of natural magnetic particles gives rise to an ambiguous interpretation of these components. To reduce this ambiguity and provide a straightforward interpretation of coercivity components in terms of domain state, interactions, and constituent magnetic phases, we combined backfield IRM unmixing with unmixing of nonlinear Preisach maps for two typical mid‐latitude northern hemisphere loess‐paleosol sequences. Both backfield IRM and nonlinear Preisach maps unmixing are based on the same non‐parametric algorithm, and provide similar endmembers (EMs) in the two sections studied. The first EM (EM1) has a low median coercivity (∼21 mT) and is a non‐interacting single domain (SD) magnetite/maghemite of pedogenic origin. The second EM (EM2) has a moderate median coercivity (∼60 mT) and is a mixture of pseudo‐single domain/multidomain, SD magnetite/maghemite and non‐interacting SD hematite, all of eolian origin. The same EM1 found in both sections suggests that this component's grain size and coercivity are independent of pedogenesis intensity. The same EM2 indicates that a similar magnetic population is being transported and deposited, irrespective of the dust source area and loess granulometry. The approach outlined here provides strong evidence that non‐parametric backfield IRM unmixing isolates physically realistic EMs. Unmixing nonlinear Preisach maps elucidates these EMs in terms of domain states and their constituent magnetic phases.more » « less
-
Abstract In well‐buffered modern soils, higher annual rainfall is associated with enhanced soil ferrimagnetic mineral content, especially of ultrafine particles that result in distinctive rock magnetic properties. Hence, paleosol magnetism has been widely used as a paleoprecipitation proxy. Identifying the dominant mechanism(s) of magnetic enhancement in a given sample is critical for reliable inference of paleoprecipitation. Here, we use high‐resolution magnetic field and electron microscopy to identify the grain‐scale setting and formation pathway of magnetic enhancement in two modern soils developed in higher (∼580 mm/y) and lower (∼190 mm/y) precipitation settings from the Qilianshan Range, China. We found that both soils contain 1–30 μm aeolian Fe‐oxide grains with indistinguishable rock magnetic properties, while the higher‐precipitation soil contains an additional population of ultrafine (<150 nm) magnetically distinct magnetite grains. We show that the in situ precipitation of these ultrafine particles, likely during wet‐dry cycling, is the only significant magnetic enhancement mechanism in this soil. These results demonstrate the potential of quantum diamond microscope magnetic microscopy to extract magnetic information from distinct, even intimately mixed, grain populations. This information can be used to evaluate the contribution of distinct enhancement mechanisms to the total magnetization.more » « less
-
Abstract Dryland productivity is highly sensitive to precipitation variability, and models predict that rainfall variability will increase in the future. Numerous studies have documented the relationship between productivity and precipitation, but most focus on aboveground production (ANPP), while the effects on belowground production (BNPP) remain poorly understood. Furthermore, previous research suggests that ANPP and BNPP are uncoupled within ecosystems, but the degree to which rainfall variability affects the interplay between aboveground and belowground production is unknown. We conducted a long‐term rainfall manipulation experiment in Chihuahuan Desert grassland to investigate how the size and frequency of growing season rain events affected BNPP and its relationship to ANPP. Experimental plots received either 12 small‐frequent rain events or 3 large‐infrequent events during the monsoon season for a total of 60 mm of added rainfall per treatment per year. All plots, including three controls, received ambient rainfall throughout the year. Total BNPP ranged from a low of 94.7 ± 38.2 g m2year−1under ambient conditions to a high of 183.7 ± 44.6 g m2year−1under the small‐frequent rainfall treatment. Total BNPP was highest under small‐frequent rain events, and there was no difference in BNPP between 0–15 and 15–30 cm soil depths in either rainfall treatment. ANPP and BNPP were uncorrelated within rainfall treatments, but weakly positively correlated across all plots and years. Our results contribute to a growing body of research on the importance of small rain events in drylands and provide further evidence regarding the weak coupling between aboveground and belowground processes.more » « less
-
Abstract Terrestrial‐marine dust fluxes, pedogenic carbonate δ13C values, and various paleovegetation proxies suggest that Africa experienced gradual cooling and drying across the Pliocene‐Pleistocene (Plio‐Pleistocene) boundary (2.58 million years ago [Ma]). However, the timing, magnitude, resolution, and relative influences of orbitally‐driven changes in high latitude glaciations and low latitude insolation differ by region and proxy. To disentangle these forcings and investigate equatorial eastern African climate across the Plio‐Pleistocene boundary, we generated a high‐resolution (∼3,000‐year) data set of compound‐specificn‐alkane leaf wax δ2H values—a robust proxy for atmospheric circulation and precipitation amount—from the HSPDP‐BTB13‐1A core, which spans a ∼3.3–2.6 Ma sequence in the Baringo‐Tugen Hills‐Barsemoi Basin of central Kenya. In combination with the physical sedimentology, our data indicate that precipitation varied strongly with orbital obliquity, not precession, during the late Pliocene, perhaps imparted by variations in the cross‐equatorial insolation gradient. We also observe a marked shift toward wetter conditions beginning ∼3 Ma that corresponds with global cooling, drying in western Australia, and a steepening of the west‐east zonal Indian Ocean (IO) sea surface temperature (SST) gradient. We propose that northward migration of the Subtropical Front reduced Agulhas current leakage, warming the western IO and causing changes in the IO zonal SST gradient at 3 Ma, a process that has been observed in the latest Pleistocene‐Holocene but not over longer timescales. Thus, the late Cenozoic moisture history of eastern Africa is driven by a complex mixture of low‐latitude insolation, the IO SST gradient, and teleconnections to distal high‐latitude cooling.more » « less
An official website of the United States government
