skip to main content


Title: Assessing ecological and physiological costs of melanism in North American Papilio glaucus females: two decades of dark morph frequency declines
Abstract

Polymorphisms for melanic form of insects may provide various selective advantages. However, melanic alleles may have significant/subtle pleiotrophic “costs.” Several potential pleiotrophic effects of the W (=Y)‐linked melanism gene inPapilio glaucusL. (Lepidoptera) showed no costs for melanic versus yellow in adult size, oviposition preferences, fecundity, egg viability, larval survival/growth rates, cold stress tolerance, or postdiapause emergence times. Sexual selection (males choosing yellow rather than mimetic dark females) had been suggested to provide a balanced polymorphism inP. glaucus, but spermatophore counts in wild females and direct field tethering studies of size‐matched pairs of virgin females (dark and yellow), show that male preferences are random or frequency‐dependent from Florida to Michigan, providing no yellow counter‐advantages. Recent frequency declines of dark (melanic/mimetic) females inP. glaucuspopulations are shown in several major populations from Florida (27.3°N latitude) to Ohio (38.5° N). Summer temperatures have increased significantly at all these locations during this time (1999–2018), but whether dark morphs may be more vulnerable (in any stage) to such climate warming remains to be determined. Additional potential reasons for the frequency declines in mimetic females are discussed: (i) genetic introgression of Z‐linked melanism suppressor genes fromP. canadensis(R & J) and the hybrid species,P. appalachiensis(Pavulaan & Wright), (ii) differential developmental incompatibilities, or Haldane effects, known to occur in hybrids, (iii) selection against intermediately melanic (“dusty”) females (with the W‐linked melanic gene, b+) which higher temperatures can cause.

 
more » « less
NSF-PAR ID:
10457151
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Insect Science
Volume:
27
Issue:
3
ISSN:
1672-9609
Page Range / eLocation ID:
p. 583-612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Variation in temperature can affect the expression of a variety of important fitness‐related behaviours, including those involved with mate attraction and selection, with consequences for the coordination of mating across variable environments. We examined how temperature influences the expression of male mating signals and female mate preferences—as well as the relationship between how male signals and female mate preferences change across temperatures (signal–preference temperature coupling)—inEnchenopa binotatatreehoppers. These small plant‐feeding insects communicate using plantborne vibrations, and our field surveys indicate they experience significant natural variation in temperature during the mating season. We tested for signal–preference temperature coupling in four populations ofE. binotataby manipulating temperature in a controlled laboratory environment. We measured the frequency of male signals—the trait for which females show strongest preference—and female peak preference—the signal frequency most preferred by females—across a range of biologically relevant temperatures (18°C–36°C). We found a strong effect of temperature on both male signals and female preferences, which generated signal–preference temperature coupling within each population. Even in a population in which male signals mismatched female preferences, the temperature coupling reinforces predicted directional selection across all temperatures. Additionally, we found similar thermal sensitivity in signals and preferences across populations even though populations varied in the mean frequency of male signals and female peak preference. Together, these results suggest that temperature variation should not affect the action of sexual selection via female choice, but rather should reinforce stabilizing selection in populations with signal–preference matches, and directional selection in those with signal–preference mismatches. Finally, we do not predict that thermal variation will disrupt the coordination of mating in this species by generating signal–preference mismatches at thermal extremes.

     
    more » « less
  2. Abstract

    Chromosomal inversions often contribute to local adaptation across latitudinal clines, but the underlying selective mechanisms remain poorly understood. We and others have previously shown that a clinal inversion polymorphism inDrosophila melanogaster,In(3R)Payne, underpins body size clines along the North American and Australian east coasts. Here, we ask whether this polymorphism also contributes to clinal variation in other fitness‐related traits, namely survival traits (lifespan, survival upon starvation and survival upon cold shock). We generated homokaryon lines, either carrying the inverted or standard chromosomal arrangement, isolated from populations approximating the endpoints of the North American cline (Florida, Maine) and phenotyped the flies at two growth temperatures (18 °C, 25 °C). Across both temperatures, high‐latitude flies from Maine lived longer and were more stress resistant than low‐latitude flies from Florida, as previously observed. Interestingly, we find that this latitudinal pattern is partly explained by the clinal distribution of theIn(3R)Ppolymorphism, which is at ~ 50% frequency in Florida but absent in Maine: inverted karyotypes tended to be shorter‐lived and less stress resistant than uninverted karyotypes. We also detected an interaction between karyotype and temperature on survival traits. AsIn(3R)Pinfluences body size and multiple survival traits, it can be viewed as a ‘supergene’, a cluster of tightly linked loci affecting multiple complex phenotypes. We conjecture that the inversion cline is maintained by fitness trade‐offs and balancing selection across geography; elucidating the mechanisms whereby this inversion affects alternative, locally adapted phenotypes across the cline is an important task for future work.

     
    more » « less
  3. Abstract

    Phenotypic differences between urban and rural populations are well‐documented, but the evolutionary processes driving trait variation along urbanization gradients are often unclear. We combined spatial data on abundance, trait variation, and measurements of fitness to understand cline structure and test for natural selection on heritable coat color morphs (melanic, gray) of eastern gray squirrels (Sciurus carolinensis) along an urbanization gradient. Population surveys using remote cameras and visual counts at 76 sites along the urbanization gradient revealed a significant cline in melanism, decreasing from 48% in the city center to <5% in rural woodlands. Among 76 squirrels translocated to test for phenotypic selection, survival was lower for the melanic than gray morph in rural woodlands, whereas there was no difference in survival between color morphs in the city. These results suggest the urban–rural cline in melanism is explained by natural selection favoring the gray morph in rural woodlands combined with relaxed selection in the city. Our study illustrates how trait variation between urban and rural populations can emerge from selection primarily in rural populations rather than adaptation to novel features of the urban environment.

     
    more » « less
  4. Sexual dimorphism is a major component of morphological variation across the tree of life, but the mechanisms underlying phenotypic differences between sexes of a single species are poorly understood. We examined the population genomics and biogeography of the common palmfly Elymnias hypermnestra , a dual mimic in which female wing colour patterns are either dark brown (melanic) or bright orange, mimicking toxic Euploea and Danaus species, respectively. As males always have a melanic wing colour pattern, this makes E. hypermnestra a fascinating model organism in which populations vary in sexual dimorphism. Population structure analysis revealed that there were three genetically distinct E. hypermnestra populations, which we further validated by creating a phylogenomic species tree and inferring historical barriers to gene flow. This species tree demonstrated that multiple lineages with orange females do not form a monophyletic group, and the same is true of clades with melanic females. We identified two single nucleotide polymorphisms (SNPs) near the colour patterning gene WntA that were significantly associated with the female colour pattern polymorphism, suggesting that this gene affects sexual dimorphism. Given WntA 's role in colour patterning across Nymphalidae, E. hypermnestra females demonstrate the repeatability of the evolution of sexual dimorphism. 
    more » « less
  5. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE 
    more » « less