Environmental and biotic responses to early Eocene hyperthermal events in the southwest Pacific are critical for global paleoclimate reconstructions during Cenozoic greenhouse intervals, but detailed multidisciplinary studies are generally missing from this time and location. Eocene carbonate sediments were recovered during International Ocean Discovery Program Expedition 371 at Site U1510 on southern Lord Howe Rise in the Tasman Sea. Part of the Early Eocene Climatic Optimum (EECO; 53.26–49.14 Ma) and superimposed hyperthermal events have been identified based on refined calcareous nannofossil biostratigraphic data and carbon stable isotope records on bulk sediment and benthic foraminifera. Four negative carbon isotope excursions (CIEs) associated with negative oxygen isotope excursions are recognized within the EECO. Comparison with a global compilation of sites indicates these CIEs correlate to the K event (Eocene Thermal Maximum 3), and tentatively to the S, T, and U events. Sediments with a high carbonate content throughout the EECO provide an excellent opportunity to examine these CIEs, as carbonate dissolution often impacts correlative records elsewhere. Benthic foraminifera and calcareous nannoplankton taxa indicative of warm waters are most abundant during the K event, the most prominent hyperthermal of the EECO. Eutrophication of surface waters during the K event did not lead to increased trophic conditions at the seafloor, whereas a coupled response is observed during smaller hyperthermals. The biotic turnover sheds new light on the paleoenvironmental consequences of hyperthermal events.
The early to middle Eocene is marked by prominent changes in calcareous nannofossil assemblages coinciding both with long‐term climate changes and modification of the North Atlantic deep ocean circulation. In order to assess the impact of Eocene climate change on surface water environmental conditions of the Northwest Atlantic, we developed calcareous nannoplankton assemblage data and bulk stable isotope records (δ18O and δ13C) across an early to middle Eocene interval (~52–43 Ma) at Integrated Ocean Drilling Program Site U1410 (Southeast Newfoundland Ridge, ~41°N). At this site, early Eocene sediments are pelagic nannofossil chalk, whereas middle Eocene deposits occur as clay‐rich drift sediments reflecting the progressive influence of northern‐sourced deep currents. Between the end of Early Eocene Climatic Optimum (EECO) and the Ypresian/Lutetian boundary, calcareous nannofossils switched from an assemblage mainly composed of warm‐water and oligotrophic taxa (
- PAR ID:
- 10457230
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 34
- Issue:
- 12
- ISSN:
- 2572-4517
- Format(s):
- Medium: X Size: p. 1913-1930
- Size(s):
- p. 1913-1930
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Multiple abrupt warming events (“hyperthermals”) punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation’s sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.
-
Abstract Chert, porcelainite, and other siliceous phases are exceptionally common in Atlantic sedimentary records of the early Eocene, but the origins of these facies remain enigmatic. The early Eocene was also the warmest interval of the entire Cenozoic Era, punctuated by numerous discrete warming events termed “hyperthermals,” the largest of which is termed the Paleocene‐Eocene Thermal Maximum (~56 Ma). Here we present new and published lithologic and carbon isotope records of silica‐bearing lower Eocene sediments and suggest a link between the ubiquitous Atlantic cherts of that time period and hyperthermal events. Our data demonstrate that many of these Atlantic siliceous horizons coincide with negative carbon isotope excursions (a hallmark of hyperthermal events), including a previously unrecognized record of the Paleocene‐Eocene Thermal Maximum in the South Atlantic. Hyperthermal‐associated silica burial appears to be focused in the western middle to high latitudes of both the North and South Atlantic, with no association between siliceous facies and hyperthermal events found in the Pacific. We also present a new model of the coupled carbon and silica cycles (LOSiCAR) to demonstrate that enhanced silicate weathering during these events would require a rapid increase in total marine silica burial. Model experiments that include previously suggested transient reversals in the pattern of deep‐ocean circulation during hyperthermals demonstrate that such a mechanism can explain the apparent focusing of elevated silica burial into the Atlantic. This combination—a silicate weathering feedback in response to global warming along with a circulation‐driven focusing of silica burial—represents a new mechanism for the formation of deep‐sea cherts in lower Eocene Atlantic sedimentary records and may be relevant to understanding chert formation in other intervals of Earth history.
-
Abstract Carbon isotope (δ13C) records from marine sediments and sedimentary rocks have been extensively used in Cenozoic chemostratigraphy. The early Paleogene interval in particular has received exceptional attention because negative carbon isotope excursions (CIEs) documented in the sedimentary record, for example, at the Paleocene Eocene Thermal Maximum (PETM), ca ∼56 Ma, are believed to reflect significant global carbon cycle perturbations during the warmest interval of the Cenozoic era. However, while bulk carbonate δ13C values exhibit robust correlations across widely separated marine sedimentary basins, their absolute values and magnitude of CIEs vary spatially, especially over time intervals characterized by major deviations in global carbon cycling. Moreover, bulk carbonates in open‐marine environments are an ensemble of different components, each with a distinct isotope composition. Consequently, a comprehensive interpretation of the bulk‐δ13C record requires an understanding of co‐evolution of these components. In this study, we dissect sediments, from the late Paleocene‐early Eocene interval, at ODP Site 1209 (Shatsky Rise, Pacific Ocean) to investigate how a temporally varying bulk carbonate ensemble influences the overall carbon isotope record. A set of 45 samples were examined for δ13C and δ18O compositions, as bulk and individual size fractions. We find a significant increase in coarse‐fraction abundance across the PETM, driven by a changing community structure of calcifiers, modulating the size of the CIE at Site 1209 and thus making it distinct from those recorded at other open‐marine sites. These results highlight the importance of biogeography in the marine stable isotope record, especially when isotope excursions are driven by climate‐ and/or carbon cycle changes. In addition, community composition changes will alter the interpretation of weight percent coarse fraction as proxy for carbonate dissolution.
-
Abstract The Paleocene‐Eocene Thermal Maximum (PETM) is the most pronounced global warming event of the early Paleogene related to atmospheric CO2increases. It is characterized by negative δ18O and δ13C excursions recorded in sedimentary archives and a transient disruption of the marine biosphere. Sites from the U.S. Atlantic Coastal Plain show an additional small, but distinct δ13C excursion below the onset of the PETM, coined the “pre‐onset excursion” (POE), mimicking the PETM‐forced environmental perturbations. This study focuses on the South Dover Bridge core in Maryland, where the Paleocene‐Eocene transition is stratigraphically constrained by calcareous nannoplankton and stable isotope data, and in which the POE is well‐expressed. The site was situated in a middle neritic marine shelf setting near a major outflow of the paleo‐Potomac River system. We generated high‐resolution benthic foraminiferal assemblage, stable isotope, trace‐metal, grain‐size and clay mineralogy data. The resulting stratigraphic subdivision of this Paleocene‐Eocene transition is placed within a depth transect across the paleoshelf, highlighting that the PETM sequence is relatively expanded. The geochemical records provide detailed insights into the paleoenvironment, developing from a well‐oxygenated water column in latest Paleocene to a PETM‐ecosystem under severe biotic stress‐conditions, with shifts in food supply and temperature, and under dysoxic bottom waters in a more river‐dominated setting. Environmental changes started in the latest Paleocene and culminated atthe onset of the PETM, hinting to an intensifying trigger rather than to an instantaneous event at the Paleocene‐Eocene boundary toppling the global system.