Abstract Airborne Doppler radar observations of the wind field in the tropical cyclone boundary layer (TCBL) during the landfall of Hurricane Ida (2021) are examined here. Asymmetries in tangential and radial flow are governed by tropical cyclone (TC) motion and vertical wind shear prior to landfall, while frictional effects dominate the asymmetry location during landfall. Strong TCBL inflow on the offshore‐flow side of Ida occurs during landfall, while the location of the peak tangential wind at the top of the TCBL during this period is located on the onshore‐flow side. A comparison of these observations with a numerical simulation of TC landfall shows many consistencies with the modeling study, though there are some notable differences that may be related to differences in the characteristics of the land surface between the simulation and the observations here.
more »
« less
Gradient Winds and Neutral Flow Dawn‐Dusk Asymmetry in the Auroral Oval During Geomagnetically Disturbed Conditions
Key Points Gradient wind balance is dominant in the neutral flow in the auroral oval in disturbed conditions The cyclonic flow on the dawn side is severely limited in magnitude by gradient wind constraints The anticyclonic flow on the dusk side can show anomalous super‐gradient behavior that accommodates significantly larger flow speeds
more »
« less
- Award ID(s):
- 2012994
- PAR ID:
- 10457305
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 127
- Issue:
- 1
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Impact of the Out‐Of‐Plane Flow Shear on Magnetic Reconnection at the Flanks of Earth's MagnetopauseAbstract Magnetic reconnection changes the magnetic field topology and facilitates the energy and particle exchange at magnetospheric boundaries such as the Earth's magnetopause. The flow shear perpendicular to the reconnecting plane prevails at the flank magnetopause under southward interplanetary magnetic field conditions. However, the effect of the out‐of‐plane flow shear on asymmetric reconnection is an open question. In this study, we utilize kinetic simulations to investigate the impact of the out‐of‐plane flow shear on asymmetric reconnection. By systematically varying the flow shear strength, we analyze the flow shear effects on the reconnection rate, the diffusion region structure, and the energy conversion rate. We find that the reconnection rate increases with the upstream out‐of‐plane flow shear, and for the same upstream conditions, it is higher at the dusk side than at the dawn side. The diffusion region is squeezed in the outflow direction due to magnetic pressure which is proportional to the square of the Alfvén Mach number of the shear flow. The out‐of‐plane flow shear increases the energy conversion rate , and for the same upstream conditions, the magnitude of is larger at the dusk side than at the dawn side. This study reveals that out‐of‐plane flow shear not only enhances the reconnection rate but also significantly boosts energy conversion, with more pronounced effects on the dusk‐side flank than on the dawn‐side flank. These insights pave the way for better understanding the solar wind‐magnetosphere interactions.more » « less
-
This study investigates the complementary effects of side and corner modification strategies for the aerodynamic performance of tall buildings. A total of 81 doubly symmetric models were examined. High-frequency force balance (HFFB) wind tunnel testing was conducted at the University of Florida’s (UF) boundary layer wind tunnel (BLWT), an NSF-sponsored Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The 81 models were examined under two approach flow conditions, which are suburban and open terrains. For each flow condition, the models were tested under 10 different wind angles from 0° to 45°. The base responses were recorded using a 6-axis load cell. A total of 1620 tests (81 models × 2 flow conditions × 10 wind angles) were performed in the BLWT at UF. Details are provided in the report document.more » « less
-
Abstract A long‐standing hypothesis is that the steady along‐shelf circulation in the Northwest Atlantic (NWA) coastal ocean is driven by buoyancy input from continental freshwater runoff. However, the forcing from the freshwater runoff has not been adequately evaluated and compared with other potential driving mechanisms. This study investigates the roles of both wind stress and freshwater runoff in driving the mean along‐shelf flow in the NWA coastal ocean and examines other potential drivers using a newly developed high‐resolution regional model with realistic forcing conditions. The results reveal that wind stress has a larger impact than freshwater runoff on the overall mean circulation and along‐shelf sea‐level gradient on the NWA shelf. While the continental freshwater input consistently contributes to the equatorward along‐shelf flow and higher sea level along the coast, wind stress is more effective for the setup of the broad‐scale circulation pattern by driving the along‐shelf flow on the Labrador Shelf and opposing the flow in the Mid‐Atlantic Bight and on the Scotian Shelf. In addition to the local wind and continental runoff, the sub‐Arctic inflow from higher latitude is an essential part of the NWA shelf circulation system. This remote driver directly contributes to the along‐shelf flow and insulates the shelf flow from the Gulf Stream on the southern shelves.more » « less
-
Schistosomiasis, a debilitating parasitic disease of poverty affecting more than 250 million people worldwide, is contracted upon contact with the larval form of the parasite, known as cercaria, emerging from infected freshwater snails, the obligate intermediate host of the parasite. Understanding how infectious larvae can be transported in rivers and irrigation canals is crucial to fine-tune environmental interventions targeting the parasite and its intermediate host. Specifically, lateral cavities along many tropical rivers act as water access points but can also entrap parasitic larvae and provide low-velocity environments for snail-supporting vegetation to flourish, creating potential areas of high schistosomiasis infection. In this paper, the circulation of larvae in a typical transmission site along the Lampsar River in Senegal is modeled under a range of wind and vegetation conditions to better understand how such environmental factors affect their transport. We found that wind direction has a large influence on the distribution and abundance of parasitic larvae at the water access point, whereas increasing wind speed scales velocities but does not affect flow patterns. The area of coverage of vegetation can significantly alter flow magnitudes and circulation patterns for the same wind speed and direction. Increasing vegetation coverage generally leads to an increase in larvae residence time in the side pond, but the relationship is non-monotonic with five regimes of residence time behavior based on vegetation patch radius. The results suggest that there is an optimal patch radius at which larvae residence time and velocity deviations within the side pond are maximized.more » « less
An official website of the United States government

