skip to main content


Title: The finer points of urban adaptation: intraspecific variation in lizard claw morphology
Abstract Human activity drastically transforms landscapes, generating novel habitats to which species must adaptively respond. Consequently, urbanization is increasingly recognized as a driver of phenotypic change. The structural environment of urban habitats presents a replicated natural experiment to examine trait–environment relationships and phenotypic variation related to locomotion. We use geometric morphometrics to examine claw morphology of five species of Anolis lizards in urban and forest habitats. We find that urban lizards undergo a shift in claw shape in the same direction but varying magnitude across species. Urban claws are overall taller, less curved, less pointed and shorter in length than those of forest lizards. These differences may enable more effective attachment or reduce interference with toepad function on smooth anthropogenic substrates. We also find an increase in shape disparity, a measurement of variation, in urban populations, suggesting relaxed selection or niche expansion rather than directional selection. This study expands our understanding of the relatively understudied trait of claw morphology and adds to a growing number of studies demonstrating phenotypic changes in urban lizards. The consistency in the direction of the shape changes we observed supports the intriguing possibility that urban environments may lead to predictable convergent adaptive change.  more » « less
Award ID(s):
1927194
NSF-PAR ID:
10457315
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biological Journal of the Linnean Society
Volume:
131
Issue:
2
ISSN:
0024-4066
Page Range / eLocation ID:
304 to 318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    Urbanization, despite its destructive effects on natural habitats, offers species an opportunity to colonize novel niches. Previous research found that urban Anolis lizards in Puerto Rico had increased adhesive toepad area and more ventral toepad scales, traits that are likely adaptive and genetically based. We further investigated these phenotypic changes using geometric morphometrics to measure differences in toe shape, toepad shape, and lamellar morphology. Our results indicate that the increased toepad area of urban Anolis cristatellus lizards in Puerto Rico is not simply an isometric increase in toe size. Toes of urban populations exhibit multiple disproportional changes compared to forest lizards, with a larger proportion of the toe length covered in adhesive toepad. In addition, the toepads of urban lizards increase more in length than width. Lastly, lizards in urban populations exhibit both increased number of lamellae as well as increased spacing between individual lamellae. We also observed regional variation, with urban specimens having significantly more disparity, suggesting similar processes of urban adaptation are likely happening in parallel across the island, yet with region-specific idiosyncrasies, possibly generating more variation in toepad morphology across urban specimens as compared to forest specimens. Considering the use of geometric morphometrics, we found that specimen preparation, specifically how flat and straight toes are during imaging, to be an important factor affecting our data, more so than specimen size or any other meaningful morphological variation. In addition, we found that landmark and semilandmark data can be used to directly estimate toepad area, offering the opportunity to streamline future studies. In conclusion, our results highlight the value of considering toepad morphology in more detail beyond adhesive pad area or number of lamellae. Geometric morphometrics tools may be employed to elucidate subtle differences in shape to better allow researchers to connect changes in morphology to ecology and adhesive performance.

     
    more » « less
  2. Synopsis

    Evidence suggests that hurricanes can influence the evolution of organisms, with phenotypic traits involved in adhesion, such as the toepads of arboreal lizards, being particularly susceptible to natural selection imposed by hurricanes. To investigate this idea, we quantified trait variation before and after Hurricanes Irma and Maria (2017) in forest and urban populations of the Puerto Rican lizard Anolis cristatellus. We found that the hurricanes affected toe morphology differently between forest and urban sites. In particular, toepads of the forefeet were longer and narrower in forest, but wider in urban populations, compared to pre-hurricane measures. Toepads of the hind feet were larger in area following the hurricanes. Fore and rear toes increased in length following the hurricane. There were no changes in the number of lamellae scales or lamellae spacing, but lamellae 6–11 of the forefeet shifted proximally following the hurricane. We also measured clinging performance and toe shape. We found that toepad area and toe lengths were stronger predictors of adhesive forces than toepad shape. Our results highlight an interaction between urbanization and hurricanes, demonstrating the importance to consider how urban species will respond to extreme weather events. Additionally, our different results for fore and rear feet highlight the importance of evaluating both of these traits when measuring the morphological response to hurricanes in arboreal lizards.

     
    more » « less
  3. Abstract Anolis lizards are well known for their specialist ecomorphs characterized by the convergent evolution of suites of traits linked to the use of particular microhabitats. Many of these same traits evolve rapidly in response to novel selection pressures and have been very well studied. In contrast, the tail crest, a feature present in a subset of lineages, has been almost entirely overlooked. Variation in tail crest morphology within and among species remains largely unstudied, as does the function of the trait. Here, we use the natural experiment provided by urbanization to ask whether tail crest size differs between urban and forest populations of the crested anole (Anolis cristatellus) across the Caribbean island of Puerto Rico. We find that tail crest size differs primarily between regions; however, within regions, crests are invariably larger in urban than in forest environments. This difference in size is correlated with the hotter, drier conditions and sparser distribution of perches that typify urban sites, leading to the intriguing possibility that the tail crest might be under differential natural selection for signalling and/or because of the thermoregulatory challenge of urban habitats. Further study is required to shed light on the functional significance and evolution of this under-studied trait. 
    more » « less
  4. Abstract

    Trophic morphology affects resource acquisition; therefore, species differences in such traits may be informative for inferring resource use overlap and potential species interactions.

    In lizards, head size and shape determine the size and hardness of prey that can be consumed. Lizards with large differences in head morphology are expected to overlap less in prey use than lizards with more similar traits.

    Stable isotopes are increasingly being used to describe diet, yet how traditional functional traits affect isotopic diet is often not clear a priori.

    We measured head size, head shape, 𝛿15N, and 𝛿13C under controlled resource availability in an enclosure experiment using introduced lizards in Hawaiʻi to test whether functional traits predict isotopic diet.

    Brown anolesAnolis sagreihad the tallest and narrowest heads, the highest values of 𝛿13C, and the lowest values of 𝛿15N. Gold dust day geckosPhelsuma laticaudahad the shortest and widest heads, the lowest values of 𝛿13C, and the highest values of 𝛿15N. Green anolesAnolis carolinensiswere intermediate in both diet and morphology.

    As a result of isotopic diet overlap, green anoles have reduced competitor‐free resource space in the presence of both of the other lizard species.

    Head shape was the best predictor of diet and the only trait that explained variation within as well as among species. Head size was sexually dimorphic, and therefore the weaker diet correlations with this trait may be explained by sexual selection.

    Breadth in morphospace did not correlate with isotopic diet breadth, nor did the amount of overlap in morphospace predict the amount of overlap in isotopic diet space.

    While lizards were able to locally depress prey in experimental enclosures, no shifts in diet were detected in response to the presence of heterospecifics.

    The generality of head shape in predicting isotopic diet, and whether it does so independent of habitat use, warrants additional study. Head shape provides a potentially fruitful avenue for trait‐based approaches to studying ecology and evolution in lizards.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract

    The urban heat island effect, where urban areas exhibit higher temperatures than less‐developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanization influences the ability of organisms to live in cities. Ectotherms are sensitive to environmental changes that affect thermal conditions, and therefore, increased urban temperatures may pose significant challenges to thermoregulation and alter temperature‐dependent activity. To evaluate whether these changes to the thermal environment affect the persistence and dispersal of ectothermic species in urban areas, we studied two species ofAnolislizards (Anolis cristatellusandAnolis sagrei) introduced to Miami‐Dade County, FL, USA, where they occur in both urban and natural habitats. We calculated canopy openness and measured operative temperature (Te), which estimates the distribution of body temperatures in a non‐thermoregulating population, in four urban and four natural sites. We also captured lizards throughout the day and recorded their internal body temperature (Tb). We found that urban areas had more open canopies and higherTecompared to natural habitats. Laboratory trials showed thatA. cristatelluspreferred lower temperatures thanA. sagrei. Urban sites currently occupied by each species appear to lower thermoregulatory costs for both species, but onlyA. sagreihad fieldTbthat were more often within their preferred temperature range in urban habitats compared to natural areas. Furthermore, based on availableTewithin each species' preferred temperature range, urban sites with onlyA. sagreiappear less suitable forA. cristatellus, whereas natural sites with onlyA. cristatellusare less suitable forA. sagrei. These results highlight how the thermal properties of urban areas contribute to patterns of persistence and dispersal, particularly relevant for studying species invasions worldwide.

     
    more » « less