skip to main content


Title: Evaluation of the Climate Extremes Index over the United States using 20th and mid‐21st century North American Regional Climate Change Assessment Program data
Abstract

Much of our current risk assessment, especially for extreme events and natural disasters, comes from the assumption that the likelihood of future extreme events can be predicted based on the past. However, as global temperatures rise, established climate ranges may no longer be applicable, as historic records for extremes such as heat waves and floods may no longer accurately predict the changing future climate. To assess extremes (present‐day and future) over the contiguous United States, we used NOAA's Climate Extremes Index (CEI), which evaluates extremes in maximum and minimum temperature, extreme one‐day precipitation, days without precipitation, and the Palmer Drought Severity Index (PDSI). The CEI is a spatially sensitive index that uses percentile‐based thresholds rather than absolute values to determine climate “extremeness” and is thus well‐suited to compare extreme climate across regions. We used regional climate model data from the North American Regional Climate Change Assessment Program (NARCCAP) to compare a late 20th century reference period to a mid‐21st century “business as usual” (SRES A2) greenhouse gas‐forcing scenario. Results show a universal increase in extreme hot temperatures across all models, with annual average maximum and minimum temperatures exceeding 90th percentile thresholds consistently across the continental United States. Results for precipitation indicators have greater spatial variability from model to model, but indicate an overall movement towards less frequent but more extreme precipitation days in the future. Due to this difference in response between temperature and precipitation, the mid‐21st century CEI is primarily an index of temperature extremes, with 90th percentile temperatures contributing disproportionately to the overall increase in climate extremeness. We also examine the efficacy of the PDSI in this context in comparison to other drought indices.

 
more » « less
NSF-PAR ID:
10457343
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
40
Issue:
3
ISSN:
0899-8418
Page Range / eLocation ID:
p. 1542-1560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Decision‐makers using climate projection information are often faced with the problem of data breadth, complexity, and uncertainty, which complicates the translation of climate science products in addressing management challenges. Recently, the concept of climate scenario planning attempts to simplify climate information by developing a series of plausible future “storylines.” In some cases, however, these storylines lack quantitative detail on extremes that may be useful to decision‐makers. Here, we analyse a large suite of statistically downscaled climate projections from two methods to develop quantitative projections for hydrologic extremes (heavy precipitation and drought) across Oklahoma and Texas in the United States. Downscaled projections are grouped into four specific temperature/precipitation scenarios, including “Warm/Wet,” “Hot/Dry,” “Central Tendency,” and the full multi‐model ensemble average. The region is split into three sub‐domains spanning the region's west–east precipitation gradient, and projections are examined throughout the mid‐ and late‐21st century, using two emissions scenarios (“mid‐range” and “high”). Most scenarios project increased frequency and duration of moderate or greater drought across the whole domain, with the high‐emissions Hot/Dry projections showing the most severe examples. The Warm/Wet scenario also increases the frequency of dry months, particularly in the Southern High Plains, but does not discernably alter duration, and retains a similar frequency of pluvial (wet) periods. The mid‐range projections generally retain similar evolutions among scenarios, but they reduce drought intensity and project no change in drought/pluvial frequency with the Warm/Wet scenario. Notably, the occurrence of intense precipitation increases across all scenarios and emissions categories and does not significantly differ between any of the scenarios, including Hot/Dry versus Warm/Wet. Some observed differences in extreme precipitation magnitudes between the two downscaled data sets are briefly discussed.

     
    more » « less
  2. null (Ed.)
    Abstract The frequency of heat waves (defined as daily temperature exceeding the local 90th percentile for at least three consecutive days) during summer in the United States is examined for daily maximum and minimum temperature and maximum apparent temperature, in recent observations and in 10 CMIP5 models for recent past and future. The annual average percentage of days participating in a heat wave varied between approximately 2% and 10% in observations and in the model’s historical simulations during 1979–2005. Applying today’s temperature thresholds to future projections, heat-wave frequencies rise to more than 20% by 2035–40. However, given the models’ slight overestimation of frequencies and positive trend rates during 1979–2005, these projected heat-wave frequencies should be regarded cautiously. The models’ overestimations may be associated with their higher daily autocorrelation than is found in observations. Heat-wave frequencies defined using apparent temperature, reflecting both temperature and atmospheric moisture, are projected to increase at a slightly (and statistically significantly) faster rate than for temperature alone. Analyses show little or no changes in the day-to-day variability or persistence (autocorrelation) of extreme temperature between recent past and future, indicating that the future heat-wave frequency will be due predominantly to increases in standardized (using historical period statistics) mean temperature and moisture content, adjusted by the local climatological daily autocorrelation. Using nonparametric methods, the average level and spatial pattern of future heat-wave frequency is shown to be approximately predictable on the basis of only projected mean temperature increases and local autocorrelation. These model-projected changes, even if only approximate, would impact infrastructure, ecology, and human well-being. 
    more » « less
  3. Abstract

    Two decades into the 21st century there is growing evidence for global impacts of Antarctic and Southern Ocean climate change. Reliable estimates of how the Antarctic climate system would behave under a range of scenarios of future external climate forcing are thus a high priority. Output from new model simulations coordinated as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) provides an opportunity for a comprehensive analysis of the latest generation of state‐of‐the‐art climate models following a wider range of experiment types and scenarios than previous CMIP phases. Here the main broad‐scale 21st century Antarctic projections provided by the CMIP6 models are shown across four forcing scenarios: SSP1‐2.6, SSP2‐4.5, SSP3‐7.0 and SSP5‐8.5. End‐of‐century Antarctic surface‐air temperature change across these scenarios (relative to 1995–2014) is 1.3, 2.5, 3.7 and 4.8°C. The corresponding proportional precipitation rate changes are 8, 16, 24 and 31%. In addition to these end‐of‐century changes, an assessment of scenario dependence of pathways of absolute and global‐relative 21st century projections is conducted. Potential differences in regional response are of particular relevance to coastal Antarctica, where, for example, ecosystems and ice shelves are highly sensitive to the timing of crossing of key thresholds in both atmospheric and oceanic conditions. Overall, it is found that the projected changes over coastal Antarctica do not scale linearly with global forcing. We identify two factors that appear to contribute: (a) a stronger global‐relative Southern Ocean warming in stabilisation (SSP2‐4.5) and aggressive mitigation (SSP1‐2.6) scenarios as the Southern Ocean continues to warm and (b) projected recovery of Southern Hemisphere stratospheric ozone and its effect on the mid‐latitude westerlies. The major implication is that over coastal Antarctica, the surface warming by 2100 is stronger relative to the global mean surface warming for the low forcing compared to high forcing future scenarios.

     
    more » « less
  4. Abstract

    We quantify historical and projected trends in the population exposure to climate extremes as measured by the United States National Center for Environmental Information Climate Extremes Index (CEI). Based on the analyses of the historical observations, we find that the U.S. has already experienced a rise in the occurrence of aggregated extremes in recent decades, consistent with the climate response to historical increases in radiative forcing. Additionally, we find that exposure can be expected to intensify under the Representative Concentration Pathway 8.5, with all counties permanently exceeding the baseline variability in the occurrence of extreme hot days, warm nights, and drought conditions by 2050. As a result, every county in the U.S. is projected to permanently exceed the historical CEI variability (as measured by one standard deviation during the 1981–2005 period). Based on the current population distribution, this unprecedented change implies a yearly exposure to extreme conditions for one in every three people. We find that the increasing trend in exposure to the aggregated extremes is already detectable over much of the U.S., and particularly in the central and eastern U.S. The high correspondence between the pattern of trends in our simulations and observations increases confidence in the projected amplification of population exposure to unprecedented combinations of extreme climate conditions, should greenhouse gas concentrations continue to escalate along their current trajectory.

     
    more » « less
  5. Abstract

    Strengthened by polar amplification, Arctic warming provides direct evidence for global climate change. This analysis shows how Arctic surface air temperature (SAT) extremes have changed throughout time. Using ERA5, we demonstrate a pan-Arctic (>60°N) significant upward SAT trend of +0.62°C decade−1since 1979. Due to this warming, the warmest days of each month in the 1980s to 1990s would be considered average today, while the present coldest days would be regarded as normal in the 1980s to 1990s. Over 1979–2021, there was a 2°C (or 7%) reduction of pan-Arctic SAT seasonal cycle, which resulted in warming of the cold SAT extremes by a factor of 2 relative to the SAT trend and dampened trends of the warm SAT extremes by roughly 25%. Since 1979, autumn has seen the strongest increasing trends in daily maximum and minimum temperatures, as well as counts of days with SAT above the 90th percentile and decreasing trends in counts of days with SAT below the 10th percentile, consistent with rapid Arctic sea ice decline and enhanced air–ocean heat fluxes. The modulated SAT seasonal signal has a significant impact on the timing of extremely strong monthly cold and warm spells. The dampening of the SAT seasonal fluctuations is likely to continue to increase as more sea ice melts and upper-ocean warming persists. As a result, the Arctic winter cold SAT extremes may continue to exhibit a faster rate of change than that of the summer warm SAT extremes as the Arctic continues to warm.

    Significance Statement

    As a result of global warming, the Arctic Ocean’s sea ice is receding, exposing more and more areas to air–sea interactions. This reduces the range of seasonal changes in Arctic surface air temperatures (SAT). Since 1979, the reduced seasonal SAT signal has decreased the trend of warm SAT extremes by 25% over the background warming trend and doubled the trend of cold SAT extremes relative to SAT trends. A substantial number of warm and cold spells would not have been identified as exceptional if the reduction of the Arctic SAT seasonal amplitudes had not been taken into account. As the Arctic continues to warm and sea ice continues to diminish, seasonal SAT fluctuations will become more dampened, with the rate of decreasing winter SAT extremes exceeding the rate of increasing summer SAT extremes.

     
    more » « less