skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PTEase: Objective Airway Examination for Pulmonary Telemedicine using Commodity Smartphones
Remote monitoring and evaluation of pulmonary diseases via telemedicine are important to disease diagnosis and management, but current telemedicine solutions have limited capability of objectively examining the airway's internal physiological conditions that are crucial to pulmonary disease evaluation. Existing solutions based on smartphone sensing are also limited to externally monitoring breath rates, respiratory events, or lung function. In this paper, we present PTEase, a new system design that addresses these limitations and uses commodity smartphones to examine the airway's internal physiological conditions. PTEase uses active acoustic sensing to measure the internal changes of lower airway caliber, and then leverages machine learning to analyze the sensory data for pulmonary disease evaluation. We implemented PTEase as a smartphone app, and verified its measurement error in lab-controlled settings as <10%. Clinical studies further showed that PTEase reaches 75% accuracy on disease prediction and 11%-15% errors in estimating lung function indices. Given that such accuracy is comparable with that in clinical practice using spirometry, PTEase can be reliably used as an assistive telemedicine tool for disease evaluation and monitoring.  more » « less
Award ID(s):
2029520 2205360 2215042 1956002 2217003 1812407
PAR ID:
10457362
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services
Page Range / eLocation ID:
110 to 123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pulmonary diseases, such as asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major public health challenge. The disease symptoms, including airway obstruction and inflammation, usually result in changes in airway mechanical properties, such as the caliber and impedance of the airway. To measure such airway properties for disease evaluation and diagnosis purposes, pulmonary function tests (PFT) has been widely adopted. However, most existing PFT systems require expensive and cumbersome hardware that are impossible to be used out of clinic. To allow out-clinic continuous pulmonary disease evaluation, in this paper we present AWARE, a new sensing and AI system that supports accurate and reliable PFT using commodity smartphones. AWARE uses a smartphone to transmit acoustic signals and reconstructs the profile of human airway based on the analysis of reflected acoustic waves captured from the smartphone's microphone. The subject's pulmonary condition is then evaluated by a multi-task learning model that integrates both the airway measurements and the subject's lung function records as the ground truth. Evaluations on 75 human subjects demonstrate that AWARE has the capability to achieve 80% accuracy on distinguishing between humans with healthy pulmonary function and with asthma symptoms. 
    more » « less
  2. First- and second-hand exposure to smoke or air pollutants is the primary cause of chronic obstructive pulmonary disease (COPD) pathogenesis, where genetic and age-related factors predispose the subject to the initiation and progression of obstructive lung disease. Briefly, airway inflammation, specifically bronchitis, initiates the lung disease, leading to difficulty in breathing (dyspnea) and coughing as initial symptoms, followed by air trapping and inhibition of the flow of air into the lungs due to damage to the alveoli (emphysema). In addition, mucus obstruction and impaired lung clearance mechanisms lead to recurring acute exacerbations causing progressive decline in lung function, eventually requiring lung transplant and other lifesaving interventions to prevent mortality. It is noteworthy that COPD is much more common in the population than currently diagnosed, as only 16 million adult Americans were reported to be diagnosed with COPD as of 2018, although an additional 14 million American adults were estimated to be suffering from COPD but undiagnosed by the current standard of care (SOC) diagnostic, namely the spirometry-based pulmonary function test (PFT). Thus, the main issue driving the adverse disease outcome and significant mortality for COPD is lack of timely diagnosis in the early stages of the disease. The current treatment regime for COPD emphysema is most effective when implemented early, on COPD onset, where alleviating symptoms and exacerbations with timely intervention(s) can prevent steep lung function decline(s) and disease progression to severe emphysema. Therefore, the key to efficiently combatting COPD relies on early detection. Thus, it is important to detect early regional pulmonary function and structural changes to monitor modest disease progression for implementing timely interventions and effectively eliminating emphysema progression. Currently, COPD diagnosis involves using techniques such as COPD screening questionnaires, PFT, arterial blood gas analysis, and/or lung imaging, but these modalities are limited in their capability for early diagnosis and real-time disease monitoring of regional lung function changes. Hence, promising emerging techniques, such as X-ray phase contrast, photoacoustic tomography, ultrasound computed tomography, electrical impedance tomography, the forced oscillation technique, and the impulse oscillometry system powered by robust artificial intelligence and machine learning analysis capability are emerging as novel solutions for early detection and real time monitoring of COPD progression for timely intervention. We discuss here the scope, risks, and limitations of current SOC and emerging COPD diagnostics, with perspective on novel diagnostics providing real time regional lung function monitoring, and predicting exacerbation and/or disease onset for prognosis-based timely intervention(s) to limit COPD–emphysema progression. 
    more » « less
  3. Computational modelling of the lungs is an active field of study that integrates computational advances with lung biophysics, biomechanics, physiology and medical imaging to promote individualized diagnosis, prognosis and therapy evaluation in lung diseases. The complex and hierarchical architecture of the lung offers a rich, but also challenging, research area demanding a cross-scale understanding of lung mechanics and advanced computational tools to effectively model lung biomechanics in both health and disease. Various approaches have been proposed to study different aspects of respiration, ranging from compartmental to discrete micromechanical and continuum representations of the lungs. This article reviews several developments in computational lung modelling and how they are integrated with preclinical and clinical data. We begin with a description of lung anatomy and how different tissue components across multiple length scales affect lung mechanics at the organ level. We then review common physiological and imaging data acquisition methods used to inform modelling efforts. Building on these reviews, we next present a selection of model-based paradigms that integrate data acquisitions with modelling to understand, simulate and predict lung dynamics in health and disease. Finally, we highlight possible future directions where computational modelling can improve our understanding of the structure–function relationship in the lung. 
    more » « less
  4. Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies. 
    more » « less
  5. Abstract It is challenging to locate small-airway obstructions induced by chronic obstructive pulmonary disease (COPD) directly from visualization using available medical imaging techniques. Accordingly, this study proposes an innovative and noninvasive diagnostic method to detect obstruction locations using computational fluid dynamics (CFD) and convolutional neural network (CNN). Specifically, expiratory airflow velocity contours were obtained from CFD simulations in a subject-specific 3D tracheobronchial tree. One case representing normal airways and 990 cases associated with different obstruction sites were investigated using CFD. The expiratory airflow velocity contours at a selected cross section in the trachea were labeled and stored as the database for training and testing two CNN models, i.e., ResNet50 and YOLOv4. Gradient-weighted class activation mapping (Grad-CAM) and the Pearson correlation coefficient were employed and calculated to classify small-airway obstruction locations and pulmonary airflow pattern shifts and highlight the highly correlated regions in the contours for locating the obstruction sites. Results indicate that the airflow velocity pattern shifts are difficult to directly visualize based on the comparisons of CFD velocity contours. CNN results show strong relevance exists between the locations of the obstruction and the expiratory airflow velocity contours. The two CNN-based models are both capable of classifying the left lung, right lung, and both lungs obstructions well using the CFD simulated airflow contour images with total accuracy higher than 95.07%. The two automatic classification algorithms are highly transformative to clinical practice for early diagnosis of obstruction locations in the lung using the expiratory airflow velocity distributions, which could be imaged using hyperpolarized magnetic resonance imaging. 
    more » « less