skip to main content


Title: The role of parasite dispersal in shaping a host–parasite system at multiple evolutionary scales
Abstract

Parasite dispersal can shape host–parasite interactions at both deep and shallow timescales. One approach to understanding the effects of dispersal is to study parasite lineages that differ in dispersal capability but are from the same group of hosts. In this study, we compared phylogenetic and population genetic patterns of wing and body lice from ground‐doves. Wing lice are more capable of dispersal than body lice. We sequenced full genomes of individual lice for multiple representatives of several wing and body louse species. From these data, we assembled genes for phylogenetic analysis and called SNPs for population genetic analysis. At the phylogenetic level, body lice showed more codivergence with their hosts than did wing lice. However, both wing and body lice exhibited some phylogenetic congruence with their hosts. Within species, body lice showed more population genetic structure than wing lice, although both types of lice showed some structure according to biogeography. Body lice also had significantly lower heterozygosity than wing lice, suggesting more inbreeding. Our results demonstrate that dispersal can shape a host–parasite system across evolutionary time, but also that other factors (e.g., host association and biogeography) can have varying degrees of influence on different groups of parasites and at different evolutionary scales.

 
more » « less
NSF-PAR ID:
10457394
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
27
Issue:
24
ISSN:
0962-1083
Page Range / eLocation ID:
p. 5104-5119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding both sides of host–parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host–parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice:LagopoecusandGoniodes. We used whole‐genome sequencing to obtain hundreds of genes and thousands of single‐nucleotide polymorphisms (SNPs) for the lice and double‐digest restriction‐associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.

     
    more » « less
  2. Abstract

    Understanding what processes drive community structure is fundamental to ecology. Many wild animals are simultaneously infected by multiple parasite species, so host–parasite communities can be valuable tools for investigating connections between community structures at multiple scales, as each host can be considered a replicate parasite community. Like free‐living communities, within‐host–parasite communities are hierarchical; ecological interactions between hosts and parasites can occur at multiple scales (e.g., host community, host population, parasite community within the host), therefore, both extrinsic and intrinsic processes can determine parasite community structure. We combine analyses of community structure and assembly at both the host population and individual scales using extensive datasets on wild wood mice (Apodemus sylvaticus) and their parasite community. An analysis of parasite community nestedness at the host population scale provided predictions about the order of infection at the individual scale, which were then tested using parasite community assembly data from individual hosts from the same populations. Nestedness analyses revealed parasite communities were significantly more structured than random. However, observed nestedness did not differ from null models in which parasite species abundance was kept constant. We did not find consistency between observed community structure at the host population scale and within‐host order of infection. Multi‐state Markov models of parasite community assembly showed that a host's likelihood of infection with one parasite did not consistently follow previous infection by a different parasite species, suggesting there is not a deterministic order of infection among the species we investigated in wild wood mice. Our results demonstrate that patterns at one scale (i.e., host population) do not reliably predict processes at another scale (i.e., individual host), and that neutral or stochastic processes may be driving the patterns of nestedness observed in these communities. We suggest that experimental approaches that manipulate parasite communities are needed to better link processes at multiple ecological scales.

     
    more » « less
  3. null (Ed.)
    Resistance is a key determinant in interactions between hosts and their parasites. Understanding the amount and distribution of variation in this trait between strains can provide insights into (co)evolutionary processes and their potential to shape patterns of diversity in natural populations. Using controlled inoculation in experimental mass cultures, we investigated the quantitative variation in resistance to the bacterial parasite Holospora undulata across a worldwide collection of strains of its ciliate host Paramecium caudatum . We combined the observed variation with available information on the phylogeny and biogeography of the strains. We found substantial variation in resistance among strains, with upper-bound values of broad-sense heritability >0.5 (intraclass correlation coefficients). Strain estimates of resistance were repeatable between laboratories and ranged from total resistance to near-complete susceptibility. Early (1 week post inoculation) measurements provided higher estimates of resistance heritability than did later measurements (2–3 weeks), possibly due to diverging epidemiological dynamics in replicate cultures of the same strains. Genetic distance (based on a neutral marker) was positively correlated with the difference in resistance phenotype between strains ( r = 0.45), essentially reflecting differences between highly divergent clades (haplogroups) within the host species. Haplogroup A strains, mostly European, were less resistant to the parasite (49% infection prevalence) than non-European haplogroup B strains (28%). At a smaller geographical scale (within Europe), strains that are geographically closer to the parasite origin (Southern Germany) were more susceptible to infection than those from further away. These patterns are consistent with a picture of local parasite adaptation. Our study demonstrates ample natural variation in resistance on which selection can act and hints at symbiont adaptation producing signatures in geographic and lineage-specific patterns of resistance in this model system. 
    more » « less
  4. Abstract

    Avian feather lice (Phthiraptera: Ischnocera) have undergone morphological diversification into ecomorphs based on how they escape host preening defences. Parrot lice are one prominent example of this phenomenon, with wing, body, or head louse ecomorphs occurring on various groups of parrots. Currently defined genera of parrot lice typically correspond to this ecomorphological variation. Here we explore the phylogenetic relationships among parrot feather lice by sequencing whole genomes and assembling a target set of 2395 nuclear protein coding genes. Phylogenetic trees based on concatenated and coalescent analyses of these data reveal highly supported trees with strong agreement between methods of analysis. These trees reveal that parrot feather lice fall into two separate clades that form a grade with respect to the Brueelia-complex. All parrot louse genera sampled by more than one species were recovered as monophyletic. The evolutionary relationships among these lice showed evidence of strong biogeographic signal, which may also be related to the relationships among their hosts.

     
    more » « less
  5. Abstract

    Understanding factors that facilitate interspecific pathogen transmission is a central issue for conservation, agriculture, and human health. Past work showed that host phylogenetic relatedness and geographical proximity can increase cross‐species transmission, but further work is needed to examine the importance of host traits, and species interactions such as predation, in determining the degree to which parasites are shared between hosts.

    Here we consider the factors that predict patterns of parasite sharing across a diverse assemblage of 116 wild ungulates (i.e., hoofed mammals in the Artiodactyla and Perissodactyla) and nearly 900 species of micro‐ and macroparasites, controlling for differences in total parasite richness and host sampling effort. We also consider the effects of trophic links on parasite sharing between ungulates and carnivores.

    We tested for the relative influence of range overlap, phylogenetic distance, body mass, and ecological dissimilarity (i.e., the distance separating species in a Euclidean distance matrix based on standardized traits) on parasite sharing. We also tested for the effects of variation in study effort as a potential source of bias in our data, and tested whether carnivores reported to feed on ungulates have more ungulate parasites than those that use other resources.

    As in other groups, geographical range overlap and phylogenetic similarity predicted greater parasite community similarity in ungulates. Ecological dissimilarity showed a weak negative relationship with parasite sharing. Counter to our expectations, differences, not similarity, in host body mass predicted greater parasite sharing between pairs of ungulate hosts. Pairs of well‐studied host species showed higher overlap than poorly studied species, although including sampling effort did not reduce the importance of biological traits in our models. Finally, carnivores that feed on ungulates harboured a greater richness of ungulate helminths.

    Overall, we show that the factors that predict parasite sharing in wild ungulates are similar to those known for other mammal groups, and demonstrate the importance of controlling for heterogeneity in host sampling effort in future analyses of parasite sharing. We also show that ecological interactions, in this case trophic links via predation, can allow sharing of some parasite species among distantly related host species.

     
    more » « less