skip to main content


Title: Evidence of pseudogravitational distortions of the Fermi surface geometry in the antiferromagnetic metal FeRh
Abstract

The confluence between high-energy physics and condensed matter has produced groundbreaking results via unexpected connections between the two traditionally disparate areas. In this work, we elucidate additional connectivity between high-energy and condensed matter physics by examining the interplay between spin-orbit interactions and local symmetry-breaking magnetic order in the magnetotransport of thin-film magnetic semimetal FeRh. We show that the change in sign of the normalized longitudinal magnetoresistance observed as a function of increasing in-plane magnetic field results from changes in the Fermi surface morphology. We demonstrate that the geometric distortions in the Fermi surface morphology are more clearly understood via the presence of pseudogravitational fields in the low-energy theory. The pseudogravitational connection provides additional insights into the origins of a ubiquitous phenomenon observed in many common magnetic materials and points to an alternative methodology for understanding phenomena in locally-ordered materials with strong spin-orbit interactions.

 
more » « less
Award ID(s):
1945058
NSF-PAR ID:
10457427
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
6
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less
  2. Abstract

    Search for novel electronically ordered states of matter emerging near quantum phase transitions is an intriguing frontier of condensed matter physics. In ruthenates, the interplay between Coulomb correlations among the 4delectronic states and their spin-orbit interactions, lead to complex forms of electronic phenomena. Here we investigate the double layered Sr3(Ru1−xMnx)2O7and its doping-induced quantum phase transition from a metal to an antiferromagnetic Mott insulator. Using spectroscopic imaging with the scanning tunneling microscope, we visualize the evolution of the electronic states in real- and momentum-space. We find a partial-gap at the Fermi energy that develops with doping to form a weak Mott insulating state. Near the quantum phase transition, we discover a spatial electronic reorganization into a commensurate checkerboard charge order. These findings bear a resemblance to the universal charge order in the pseudogap phase of cuprates and demonstrate the ubiquity of charge order that emanates from doped Mott insulators.

     
    more » « less
  3. Abstract

    5dtransition metal oxides, such as iridates, have attracted significant interest in condensed matter physics throughout the past decade owing to their fascinating physical properties that arise from intrinsically strong spin-orbit coupling (SOC) and its interplay with other interactions of comparable energy scales. Among the rich family of iridates, iridium dioxide (IrO2), a simple binary compound long known as a promising catalyst for water splitting, has recently been demonstrated to possess novel topological states and exotic transport properties. The strong SOC and the nonsymmorphic symmetry that IrO2possesses introduce symmetry-protected Dirac nodal lines (DNLs) within its band structure as well as a large spin Hall effect in the transport. Here, we review recent advances pertaining to the study of this unique SOC oxide, with an emphasis on the understanding of the topological electronic structures, syntheses of high crystalline quality nanostructures, and experimental measurements of its fundamental transport properties. In particular, the theoretical origin of the presence of the fourfold degenerate DNLs in band structure and its implications in the angle-resolved photoemission spectroscopy measurement and in the spin Hall effect are discussed. We further introduce a variety of synthesis techniques to achieve IrO2nanostructures, such as epitaxial thin films and single crystalline nanowires, with the goal of understanding the roles that each key parameter plays in the growth process. Finally, we review the electrical, spin, and thermal transport studies. The transport properties under variable temperatures and magnetic fields reveal themselves to be uniquely sensitive and modifiable by strain, dimensionality (bulk, thin film, nanowire), quantum confinement, film texture, and disorder. The sensitivity, stemming from the competing energy scales of SOC, disorder, and other interactions, enables the creation of a variety of intriguing quantum states of matter.

     
    more » « less
  4. Abstract

    Magnetic impurities at surfaces of superconductors can induce bound states referred to as Yu–Shiba–Rusinov states (i.e. Shiba states) within superconducting (SC) gaps. For superconductors with strong spin–orbit coupling (SOC), Shiba states arising from even single magnetic adatoms are too complex to be fully understood using effective models alone because SOC cannot be treated perturbatively and multiple orbitals are strongly mixed with spin projections. Here we investigate Shiba states of single magnetic adatoms at the surface of strongly spin-orbit coupled SC Pb, by solving the fully relativistic Dirac–Bogoliubov–de Gennes equations using multiple scattering Green’s function methods. For Fe and Co adatoms on Pb(110), we show that the Shiba states are better characterized by total angular momentum,J, and its projections on thezaxis,mJ. As a hallmark of the SOC effect, the Shiba states show a strong dependence of the orientation of the adatom moment. As the orientation of the Fe/Co moment changes, the deepest Shiba states merge at zero energy. This zero-energy state disappears with an additional non-magnetic adatom next to the magnetic adatom, although the other Shiba states unchange. For a Mn adatom on Pb, our Shiba states overall agree with experiments. The characteristics of our Shiba states are also observed with the similar energies and characters in the experiments. The deepest Shiba states that we compute, however, do not appear as close to the Fermi level as the experimental data. It would be interesting to compute the Shiba states with continuously varying vertical distances of the Mn adatom from the surface or with varying the charge state of the adatom, and to calculate the spatial dependence of the spectral density. Our findings will be also useful for understanding of Shiba states for dimers and longer spin chains on the Pb surface considering noncollinear magnetic structures in them.

     
    more » « less
  5. The past decade has witnessed the emergence of a new frontier in condensed matter physics: topological materials with an electronic band structure belonging to a different topological class from that of ordinary insulators and metals. This non-trivial band topology gives rise to robust, spin-polarized electronic states with linear energy–momentum dispersion at the edge or surface of the materials. For topological materials to be useful in electronic devices, precise control and accurate detection of the topological states must be achieved in nanostructures, which can enhance the topological states because of their large surface-to-volume ratios. In this Review, we discuss notable synthesis and electron transport results of topological nanomaterials, from topological insulator nanoribbons and plates to topological crystalline insulator nanowires and Weyl and Dirac semimetal nanobelts. We also survey superconductivity in topological nanowires, a nanostructure platform that might enable the controlled creation of Majorana bound states for robust quantum computations. Two material systems that can host Majorana bound states are compared: spin–orbit coupled semiconducting nanowires and topological insulating nanowires, a focus of this Review. Finally, we consider the materials and measurement challenges that must be overcome before topological nanomaterials can be used in next-generation electronic devices. 
    more » « less