skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: F4‐TCNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability
Abstract

Numerous strategies are developed to impart stretchability to polymer semiconductors. Although these methods improve the ductility, mobility, and stability of such stretchable semiconductors, they nonetheless still need further improvement. Here, it is shown that 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) is an effective molecular additive to tune the properties of a diketopyrrolopyrrole‐based (DPP‐based) semiconductor. Specifically, the addition of F4‐TCNQ is observed to improve the ductility of the semiconductor by altering the polymer’s microstructures and dynamic motions. As a p‐type dopant additive, F4‐TCNQ can also effectively enhance the mobility and stability of the semiconductor through changing the host polymer’s packing structures and charge trap passivation. Upon fabricating fully stretchable transistors with F4‐TCNQ‐DPP blended semiconductor films, it is observed that the resulting stretchable transistors possess one of the highest initial mobility of 1.03 cm2V−1s−1. The fabricated transistors also exhibit higher stability (both bias and environmental) and mobility retention under repeated strain, compared to those without F4‐TCNQ additive. These findings offer a new direction of research on stretchable semiconductors to facilitate future practical applications.

 
more » « less
PAR ID:
10457440
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
6
Issue:
6
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Molecular additives are often used to enhance dynamic motion of polymeric chains, which subsequently alter the functional and physical properties of polymers. However, controlling the chain dynamics of semiconducting polymer thin films and understanding the fundamental mechanisms of such changes is a new area of research. Here, cycloparaphenylenes (CPPs) are used as conjugated molecular additives to tune the dynamic behaviors of diketopyrrolopyrrole‐based (DPP‐based) semiconducting polymers. It is observed that the addition of CPPs results in significant improvement in the stretchability of the DPP‐based polymers without adversely affecting their mobility, which arises from the enhanced polymer dynamic motion and reduced long‐range crystalline order. The polymer films retain their fiber‐like morphology and short‐range ordered aggregates, which leads to high mobility. Fully stretchable transistors are subsequently fabricated using CPP/semiconductor composites as active layers. These composites are observed to maintain high mobilities when strained and after repeated applied strains. Interestingly, CPPs are also observed to improve the contact resistance and charge transport of the fully stretchable transistors. ln summary, these results collectively indicate that controlling the dynamic motion of polymer semiconductors is proved to be an effective way to improve their stretchability.

     
    more » « less
  2. Abstract

    Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm2V−1s−1at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties.

     
    more » « less
  3. Abstract

    For wearable and implantable electronics applications, developing intrinsically stretchable polymer semiconductor is advantageous, especially in the manufacturing of large‐area and high‐density devices. A major challenge is to simultaneously achieve good electrical and mechanical properties for these semiconductor devices. While crystalline domains are generally needed to achieve high mobility, amorphous domains are necessary to impart stretchability. Recent progresses in the design of high‐performance donor–acceptor polymers that exhibit low degrees of energetic disorder, while having a high fraction of amorphous domains, appear promising for polymer semiconductors. Here, a low crystalline, i.e., near‐amorphous, indacenodithiophene‐co‐benzothiadiazole (IDTBT) polymer and a semicrystalline thieno[3,2‐b]thiophene‐diketopyrrolopyrrole (DPPTT) are compared, for mechanical properties and electrical performance under strain. It is observed that IDTBT is able to achieve both a high modulus and high fracture strain, and to preserve electrical functionality under high strain. Next, fully stretchable transistors are fabricated using the IDTBT polymer and observed mobility ≈0.6 cm2V−1s−1at 100% strain along stretching direction. In addition, the morphological evolution of the stretched IDTBT films is investigated by polarized UV–vis and grazing‐incidence X‐ray diffraction to elucidate the molecular origins of high ductility. In summary, the near‐amorphous IDTBT polymer signifies a promising direction regarding molecular design principles toward intrinsically stretchable high‐performance polymer semiconductor.

     
    more » « less
  4. Isotopic substitution is a useful method to study the influence of nuclear motion on the kinetics of charge transport in semiconductors. However, in organic semiconductors, no observable isotope effect on field‐effect mobility has been reported. To understand the charge transport mechanism in rubrene, the benchmark organic semiconductor, crystals of fully isotopically substituted rubrene,13C‐rubrene (13C42H28), are synthesized and characterized. Vapor‐grown13C‐rubrene single crystals have the same crystal structure and quality as native rubrene crystals (i.e., rubrene with a natural abundance of carbon isotopes). The characteristic transport signatures of rubrene, including room temperature hole mobility over 10 cm2V−1s−1, intrinsic band‐like transport, and clear Hall behavior in the accumulation layer of air‐gap transistors, are also observed for13C‐rubrene crystals. The field‐effect mobility distributions based on 74 rubrene and13C‐rubrene devices, respectively, reveal that13C isotopic substitution produces a 13% reduction in the hole mobility of rubrene. The origin of the negative isotope effect is linked to the redshift of vibrational frequencies after13C‐substitution, as demonstrated by computer simulations based on the transient localization (dynamic disorder) scenario. Overall, the data and analysis provide an important benchmark for ongoing efforts to understand transport in ordered organic semiconductors.

     
    more » « less
  5. Abstract

    A backbone engineering strategy is developed to tune the mechanical and electrical properties of conjugated polymer semiconductors. Four Donor–Acceptor (D–A) polymers, named PTDPPSe, PTDPPTT, PTDPPBT, and PTDPPTVT, are synthesized using selenophene (Se), thienothiophene (TT), bithiophene (BT), and thienylenevinylenethiophene (TVT) as the donors and siloxane side chain modified diketopyrrolopyrrole (DPP) as acceptor. The influences of the donor structure on the polymer energy level, film morphology, molecular stacking, carrier transport properties, and tensile properties are all examined. The films of PTDPPSe show the best stretchability with crack‐onset‐strain greater than 100%, but the worst electrical properties with a mobility of only 0.54 cm2 V−1 s−1. The replacement of the Se donor with larger conjugated donors, that is, TT, BT, and TVT, significantly improves the mobility of conjugated polymers but also leads to reduced stretchability. Remarkably, PTDPPBT exhibits moderate stretchability with crack‐onset‐strain ≈50% and excellent electrical properties. At 50% strain, it has a mobility of 2.37 cm2V−1 s−1parallel to the stretched direction, which is higher than the mobility of most stretchable conjugated polymers in this stretching state.

     
    more » « less