skip to main content


Title: The anatomy of abscission zones is diverse among grass species
Premise

Abscission zones (AZ) are specialized cell layers that separate plant parts at the organ junction upon developmental or environmental signals. Fruit or seed abscission has been well studied in model species because of its crucial role for seed dispersal. Previous work showed thatAZlocalization differs among species of Poaceae and thatAZformation is histologically and genetically distinct in three distantly related grass species, refuting the idea of a broadly conserved module. However, whetherAZstructure is consistent within subfamilies is unknown.

Methods

Eleven species were selected from six subfamilies of Poaceae, and theirAZwas investigated using paraffin‐embedded, stained material. Observations were added from the literature for an additional six species. Data were recorded onAZlocation and whether cells in theAZwere distinguishable by size or lignification. Characteristics of theAZwere mapped on the phylogeny using maximum likelihood.

Results

Abscission zone anatomy and histology vary among species, and characteristics of theAZdo not correlate with phylogeny. Twelve of the seventeen studied species have anAZin which the cells are significantly smaller than surrounding cells. Of these, eight have differential lignification. Differential lignification is often associated with differential cell size, but not vice versa.

Conclusions

Neither smaller cells in theAZnor differential lignification between the AZand surrounding cells is required for abscission, although differential cell size and lignification are often correlated. Abscission zone anatomy does not correlate with phylogeny, suggesting its rapid change over evolutionary time.

 
more » « less
PAR ID:
10457590
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
107
Issue:
4
ISSN:
0002-9122
Page Range / eLocation ID:
p. 549-561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Male gametophytes of most seed plants deliver sperm to eggs via a pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern attributed to more effective haploid selection under stronger pollen competition. Paradoxically, whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. Pollen tube polyploidy should initially acceleratePTGRbecause increased heterozygosity and gene dosage should increase metabolic rates. However, polyploidy should also independently increase tube cell size, causing more work which should decelerate growth. We asked how genome size changes have affected the evolution of seed plantPTGRs.

    Methods

    We assembled a phylogenetic tree of 451 species with knownPTGRs. We then used comparative phylogenetic methods to detect effects of neo‐polyploidy (within‐genus origins),DNAcontent, andWGDhistory onPTGR, and correlated evolution ofPTGRandDNAcontent.

    Results

    Gymnosperms had significantly higherDNAcontent and slowerPTGRoptima than angiosperms, and theirPTGRandDNAcontent were negatively correlated. For angiosperms, 89% of model weight favored Ornstein‐Uhlenbeck models with a fasterPTGRoptimum for neo‐polyploids, whereasPTGRandDNAcontent were not correlated. For within‐genus and intraspecific‐cytotype pairs,PTGRs of neo‐polyploids < paleo‐polyploids.

    Conclusions

    Genome size increases should negatively affectPTGRwhen genetic consequences ofWGDs are minimized, as found in intra‐specific autopolyploids (low heterosis) and gymnosperms (fewWGDs). But in angiosperms, the higherPTGRoptimum of neo‐polyploids and non‐negativePTGRDNAcontent correlation suggest that recurrentWGDs have caused substantialPTGRevolution in a non‐haploid state.

     
    more » « less
  2. Abstract

    Bioluminescence in dinoflagellates is controlled byHV1 proton channels. Database searches of dinoflagellate transcriptomes and genomes yielded hits with sequence features diagnostic of all confirmedHV1, and show thatHV1 is widely distributed in the dinoflagellate phylogeny including the basal speciesOxyrrhis marina. Multiple sequence alignments followed by phylogenetic analysis revealed three major subfamilies ofHV1 that do not correlate with presence of theca, autotrophy, geographic location, or bioluminescence. These data suggest that most dinoflagellates express aHV1 which has a function separate from bioluminescence. Sequence evidence also suggests that dinoflagellates can contain more than oneHV1 gene.

     
    more » « less
  3. Abstract

    Across insect genomes, the size of the cytochrome P450 monooxygenase (CYP) gene superfamily varies widely.CYPome size variation has been attributed to reciprocal adaptive radiations in insect detoxification genes in response to plant biosynthetic gene radiations driven by co‐evolution between herbivores and their chemically defended hostplants. Alternatively, variation inCYPome size may be due to random “birth‐and‐death” processes, whereby exponential increase via gene duplications is limited by random decay via gene death or transition via divergence. We examinedCYPome diversification in the genomes of seven Lepidoptera species varying in host breadth from monophagous (Bombyx mori) to highly polyphagous (Amyelois transitella).CYPome size largely reflects the size of Clan 3, the clan associated with xenobiotic detoxification, and to some extent phylogenetic age. Consistently across genomes, familiesCYP6,CYP9 andCYP321 are most diverse andCYP6AB,CYP6AE,CYP6B,CYP9A andCYP9G are most diverse among subfamilies. Higher gene number in subfamilies is due to duplications occurring primarily after speciation and specialization (“P450 blooms”), and the genes are arranged in clusters, indicative of active duplicating loci. In the parsnip webworm,Depressaria pastinacella, gene expression levels in large subfamilies are high relative to smaller subfamilies. Functional and phylogenetic data suggest a correlation between highly dynamic loci (reflective of extensive gene duplication, functionalization and in some cases loss) and the ability of enzymes encoded by these genes to metabolize hostplant defences, consistent with an adaptive, nonrandom process driven by ecological interactions.

     
    more » « less
  4. Societal Impact Statement

    Groundcherry (Physalis grisea) is a plant species grown for its flavorful fruit. The fruit drops from the plant, hence the common name groundcherry. This makes harvest cumbersome and puts the fruit at risk for carrying soil‐borne pathogens, therefore making them unsellable. Furthermore, insects often damage the plants, reducing yield. Advances in gene editing offer promise for addressing these issues and aiding home gardeners and farmers. Improvement will expand access to this nutritious fruit, rich in potassium, vitamin C, and antioxidants. Additionally, studies of its biology could serve as a model for improving other fruiting plants, particularly underutilized species.

    Summary

    P. griseais an underutilized, semidomesticated fruit crop with rising agronomic value. Several resources have been developed for its use in fundamental biological research, including a plant transformation system and a high‐quality reference genome. Already,P. griseahas been used as a model to investigate biological phenomena including inflated calyx syndrome and gene compensation.P. griseahas also been used to demonstrate the potential of fast‐tracking domestication trait improvement through approaches such as CRISPR/Cas9 gene editing. This work has led to thePhysalisImprovement Project, which relies on reverse genetics to understand the mechanisms that underlie fruit abscission and plant–herbivore interactions to guide approaches for improvement of undesirable characteristics. CRISPR/Cas9 gene editing has been used to targetP. griseagenes that are suspected to act in fruit abscission, particularly orthologs of those that are reported in tomato abscission zone development. A similar approach is being taken to targetP. griseagenes involved in the withanolide biosynthetic pathway to determine the impact of withanolides on plant–herbivore interactions. Results from these research projects will lead to a greater understanding of important biological processes and will also generate knowledge needed to develop cultivars with reduced fruit drop and increased resistance to insect herbivory.

     
    more » « less
  5. Objective

    To obtain the comprehensive transcriptome profile of human citrulline‐specific B cells from patients with rheumatoid arthritis (RA).

    Methods

    Citrulline‐ and hemagglutinin‐specific B cells were sorted by flow cytometry using peptide–streptavidin conjugates from the peripheral blood ofRApatients and healthy individuals. The transcriptome profile of the sorted cells was obtained byRNA‐sequencing, and expression of key protein molecules was evaluated by aptamer‐basedSOMAscan assay and flow cytometry. The ability of these proteins to effect differentiation of osteoclasts and proliferation and migration of synoviocytes was examined by in vitro functional assays.

    Results

    Citrulline‐specific B cells, in comparison to citrulline‐negative B cells, from patients withRAdifferentially expressed the interleukin‐15 receptor α (IL‐15Rα) gene as well as genes related to protein citrullination and cyclicAMPsignaling. In analyses of an independent cohort of cyclic citrullinated peptide–seropositiveRApatients, the expression ofIL‐15Rα protein was enriched in citrulline‐specific B cells from the patients’ peripheral blood, and surprisingly, all B cells fromRApatients were capable of producing the epidermal growth factor ligand amphiregulin (AREG). Production ofAREGdirectly led to increased migration and proliferation of fibroblast‐like synoviocytes, and, in combination with anti–citrullinated protein antibodies, led to the increased differentiation of osteoclasts.

    Conclusion

    To the best of our knowledge, this is the first study to document the whole transcriptome profile of autoreactive B cells in any autoimmune disease. These data identify several genes and pathways that may be targeted by repurposing severalUSFood and Drug Administration–approved drugs, and could serve as the foundation for the comparative assessment of B cell profiles in other autoimmune diseases.

     
    more » « less