skip to main content


Title: Territory acquisition mediates the influence of predators and climate on juvenile red squirrel survival
Abstract

Juvenile survival to first breeding is a key life‐history stage for all taxa. Survival through this period can be particularly challenging when it coincides with harsh environmental conditions such as a winter climate or food scarcity, leading to highly variable cohort survival. However, the small size and dispersive nature of juveniles generally make studying their survival more difficult.

In territorial species, a key life‐history event is the acquisition of a territory. A territory is expected to enhance survival, but how it does so is not often identified. We tested how the timing of territory acquisition influenced the winter survival of juvenile North American red squirrelsTamiasciurus hudsonicus, hereafter red squirrels, and how the timing of this event mediated the sources of mortality. We hypothesized that securing a territory prior to when food resources become available would reduce juvenile susceptibility to predation and climatic factors overwinter.

Using 27 years of data on the survival of individually marked juvenile red squirrels, we tested how the timing of territory acquisition influenced survival, whether the population density of red squirrel predators and mean temperature overwinter were related to individual survival probability, and if territory ownership mediated these effects.

Juvenile red squirrel survival was lower in the years of high predator abundance and in colder winters. Autumn territory owners were less susceptible to lynxLynx canadensisand possibly mustelidMustelaandMartesspp., predation. Autumn territory owners had lower survival in colder winters, but surprisingly non‐owners had higher survival in cold winters.

Our results show how the timing of a life‐history event like territory acquisition can directly affect survival and also mediate the effects of biotic and abiotic factors later in life. This engenders a better understanding of the fitness consequences of the timing of key life‐history events.

 
more » « less
NSF-PAR ID:
10457610
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
89
Issue:
6
ISSN:
0021-8790
Page Range / eLocation ID:
p. 1408-1418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Long‐term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context.

    Many previous studies have only investigated life‐history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness‐relevant traits to better understand their population‐level responses to those environmental fluctuations.

    For the past 32 years, we have conducted a long‐term integrative study of individually marked North American red squirrelsTamiasciurus hudsonicusErxleben in the Yukon, Canada. We have used multi‐year field experiments to examine the physiological and life‐history responses of individual red squirrels to fluctuations in food abundance and conspecific density.

    Our long‐term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change.

    As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life‐history plasticity, as does experimental food supplementation.

    Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life‐history plasticity.

    Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life‐history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology.

    We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life‐history plasticity.

     
    more » « less
  2. Abstract

    Animals switch between inactive and active states, simultaneously impacting their energy intake, energy expenditure and predation risk, and collectively defining how they engage with environmental variation and trophic interactions. We assess daily activity responses to long‐term variation in temperature, resources and mating opportunities to examine whether individuals choose to be active or inactive according to an optimisation of the relative energetic and reproductive gains each state offers. We show that this simplified behavioural decision approach predicts most activity variation (R2 = 0.83) expressed by free‐ranging red squirrels over 4 years, as quantified through accelerometer recordings (489 deployments; 5066 squirrel‐days). Recognising activity as a determinant of energetic status, the predictability of activity variation aggregated at a daily scale, and the clear signal that behaviour is environmentally forced through optimisation of gain, provides an integrated approach to examine behavioural variation as an intermediary between environmental variation and energetic, life‐history and ecological outcomes.

     
    more » « less
  3. Abstract

    Understanding the fitness consequences of different life histories is critical for explaining their diversity and for predicting effects of changing environmental conditions. However, current theory on plant life histories relies on phenomenological, rather than mechanistic, models of resource production.

    We combined a well‐supported mechanistic model of ontogenetic growth that incorporates differences in the size‐dependent scaling of gross resource production and maintenance costs with a dynamic optimization model to predict schedules of reproduction and prolonged dormancy (plants staying below ground for ≥1 growing season) that maximize lifetime offspring production.

    Our model makes three novel predictions: First, maintenance costs strongly influence the conditions under which a monocarpic or polycarpic life history evolves and how resources should be allocated to reproduction by polycarpic plants. Second, in contrast to previous theory, our model allows plants to compensate for low survival conditions by allocating a larger proportion of resources to storage and thereby improving overwinter survival. Incorporating this ecological mechanism in the model is critically important because without it our model never predicts significant investment into storage, which is inconsistent with empirical observations. Third, our model predicts that prolonged dormancy may evolve solely in response to resource allocation trade‐offs.

    Significance. Our findings reveal that maintenance costs and the effects of resource allocation on survival are primary determinants of the fitness consequences of different life history strategies, yet previous theory on plant life history evolution has largely ignored these factors. Our findings also validate recent arguments that prolonged dormancy may be an optimal response to costs of sprouting. These findings have broad implications for understanding patterns of plant life history variation and predicting plant responses to changing environments.

     
    more » « less
  4. Abstract

    While the functional response of predators is commonly measured, recent work has revealed that the age and sex composition of prey killed is often a better predictor of prey population dynamics because the reproductive value of adult females is usually higher than that of males or juveniles.

    Climate is often an important mediating factor in determining the composition of predator kills, but we currently lack a mechanistic understanding of how the multiple facets of climate interact with prey abundance and demography to influence the composition of predator kills.

    Over 20 winters, we monitored 17 wolf packs in Yellowstone National Park and recorded the sex, age and nutritional condition of kills of their dominant prey—elk—in both early and late winter periods when elk are in relatively good and relatively poor condition, respectively.

    Nutritional condition (as indicated by per cent marrow fat) of wolf‐killed elk varied markedly with summer plant productivity, snow water equivalent (SWE) and winter period. Moreover, marrow was poorer for wolf‐killed bulls and especially for calves than it was for cows.

    Wolf prey composition was influenced by a complex set of climatic and endogenous variables. In early winter, poor plant growth in either yeartor− 1, or relatively low elk abundance, increased the odds of wolves killing bulls relative to cows. Calves were most likely to get killed when elk abundance was high and when the forage productivity they experienced in utero was poor. In late winter, low SWE and a relatively large elk population increased the odds of wolves killing calves relative to cows, whereas low SWE and poor vegetation productivity 1 year prior together increased the likelihood of wolves killing a bull instead of a cow.

    Since climate has a strong influence on whether wolves prey on cows (who, depending on their age, are the key reproductive components of the population) or lower reproductive value of calves and bulls, our results suggest that climate can drive wolf predation to be more or less additive from year to year.

     
    more » « less
  5. Abstract

    Ameliorating the impacts of climate change on communities requires understanding the mechanisms of change and applying them to predict future responses. One way to prioritize efforts is to identify biotic multipliers, which are species that are sensitive to climate change and disproportionately alter communities. We first evaluate the mechanisms underlying the occupancy dynamics of marbled salamanders, a key predator in temporary ponds in the eastern United States We use long‐term data to evaluate four mechanistic hypotheses proposed to explain occupancy patterns, including autumn flooding, overwintering predation, freezing, and winterkill from oxygen depletion. Results suggest that winterkill and fall flooding best explain marbled salamander occupancy patterns. A field introduction experiment supports the importance of winterkill via hypoxia rather than freezing in determining overwinter survival and rejects dispersal limitation as a mechanism preventing establishment. We build climate‐based correlative models that describe salamander occupancy across ponds and years at two latitudinally divergent sites, a southern and middle site, with and without field‐collected habitat characteristics. Correlative models with climate and habitat variation described occupancy patterns better than climate‐only models for each site, but poorly predicted occupancy patterns at the site not used for model development. We next built hybrid mechanistic metapopulation occupancy models that incorporated flooding and winterkill mechanisms. Although hybrid models did not describe observed site‐specific occupancy dynamics better than correlative models, they better predicted the other site's dynamics, revealing a performance trade‐off between model types. Under future climate scenarios, models predict an increased occupancy of marbled salamanders, especially at the middle site, and expansion at a northern site beyond the northern range boundary. Evidence for the climate sensitivity of marbled salamanders combined with their disproportionate ecological impacts suggests that they might act as biotic multipliers of climate change in temporary ponds. More generally, we predict that top aquatic vertebrate predators will expand into temperate‐boreal lakes as climate change reduces winterkill worldwide. Predaceous species with life histories sensitive to winter temperatures provide good candidates for identifying additional biotic multipliers. Building models that include biological mechanisms for key species such as biotic multipliers could better predict broad changes in communities and design effective conservation actions.

     
    more » « less