Employing a quartz crystal microbalance (QCM) as a MHz‐viscoelastic sensor requires extracting information from higher harmonics beyond the Sauerbrey limit, which can be problematic for rubbery polymer films that are highly dissipative because of the onset of anharmonic side bands and film resonance. Data analysis for QCM can frequently obscure the underlying physics or involve approximations that tend to break down at higher harmonics. In this study, modern computational tools are leveraged to solve a continuum physics model for the QCM's acoustic shear wave propagation through a polymer film with zero approximations, retaining the physical intuition of how the experimental signal connects to the shear modulus of the material. The resulting set of three coupled equations are solved numerically to fit experimental data for the resonance frequency Δ
The ability to monitor sub‐micrometer gas vesicles' (GVs) vibration behavior to nonlinear buckling and collapse using laser Doppler vibrometry is reported, providing a precise noncontact technique for monitoring the motion of sub‐micrometer objects. The fundamental and first harmonic resonance frequencies of the vesicles are found to be 1.024 and 1.710 GHz, respectively. An interparticle resonance is furthermore identified at ≈300 MHz, inversely dependent upon the agglomerated GV size of around 615 nm. Most importantly, the vesicles amplify and broaden input acoustic signals at far lower frequencies—for example, 7 MHz—associated with medical and industrial applications, and they are found to transition from a linear to nonlinear response at 150 kPa and to collapse at 350 kPa or greater.
more » « less- PAR ID:
- 10457635
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 30
- Issue:
- 13
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract f n and dissipation ΔΓn shifts as a function of harmonic numbern , over an extended harmonic range approaching film resonance. This allows the frequency‐dependent modulus of polymer films at MHz frequencies, modeled as linear on a log–log scale, to be determined for rubbery polybutadiene (PB) and polydimethylsiloxane (PDMS) films, showing excellent agreement with time–temperature shifted rheometry data from the literature. -
We report on spectroscopic measurements on the 4
f 76s 28 S 7/2∘−4f 7(8 S ∘)6s 6p (1 P ∘)8 P 5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s 6p (1 P ∘)8 P 5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA (151)=−157.01(3)MHz,B (151)=74.5(4)MHz andA (153)=−69.43(14)MHz,B (153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB (151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s 6p (1 P ∘)8P 7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA (151)=−218.66(4)MHz,B (151)=−293.4(8)MHz andA (153)=−97.15(13)MHz,B (153)=−750(3)MHz. These values are all consistent with previously published results except forA (151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results. -
Abstract New materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibility
χ (2)has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications. Here, we introduce a metal/dielectric heterostructured platform, i.e., TiN/Al2O3epitaxial multilayers, to overcome that limitation. This platform has an extremely highχ (2)of approximately 1500 pm/V at NIR frequencies. By combining the aforementioned heterostructure with the large electric field enhancement afforded by a nanostructured metasurface, the power efficiency of second harmonic generation (SHG) achieved 10−4at an incident pulse intensity of 10 GW/cm2, which is an improvement of several orders of magnitude compared to that of previous demonstrations from nonlinear surfaces at similar frequencies. The proposed quantum-engineered heterostructures enable efficient wave mixing at visible/NIR frequencies into ultracompact nonlinear optical devices. -
Abstract The etching of sub micrometer high-aspect-ratio (HAR) features into dielectric materials in low pressure radio frequency technological plasmas is limited by the accumulation of positive surface charges inside etch trenches. These are, at least partially, caused by highly energetic positive ions that are accelerated by the sheath electric field to high velocities perpendicular to the wafer. In contrast to these anisotropic ions, thermal electrons typically reach the electrode only during the sheath collapse and cannot penetrate deeply into HAR features to compensate the positive surface charges. This problem causes significant reductions of the etch rate and leads to deformations of the features due to ion deflection, i.e. the aspect ratio is limited. Here, we demonstrate that voltage waveform tailoring can be used to generate electric field reversals adjacent to the wafer during sheath collapse to accelerate electrons towards the electrode to allow them to penetrate deeply into HAR etch features to compensate positive surface charges and to overcome this process limitation. Based on 1D3V particle-in-cell/Monte Carlo collision simulations of a capacitively coupled plasma operated in argon at 1 Pa, we study the effects of changing the shape, peak-to-peak voltage, and harmonics’ frequencies of the driving voltage waveform on this electric field reversal as well as on the electron velocity and angular distribution function at the wafer. We find that the angle of incidence of electrons relative to the surface normal at the wafer can be strongly reduced and the electron velocity perpendicular to the wafer can be significantly increased by choosing the driving voltage waveform in a way that ensures a fast and short sheath collapse. This is caused by the requirement of flux compensation of electrons and ions at the electrode on time average in the presence of a short and steep sheath collapse.
-
Abstract Low‐frequency surf zone eddies disperse material between the shoreline and the continental shelf, and velocity fluctuations with frequencies as low as a few mHz have been observed previously on several beaches. Here spectral estimates of surf zone currents are extended to an order of magnitude lower frequency, resolving an extremely low frequency peak of approximately 0.5 mHz that is observed for a range of beaches and wave conditions. The magnitude of the 0.5‐mHz peak increases with increasing wave energy and with spatial inhomogeneity of bathymetry or currents. The 0.5‐mHz peak may indicate the frequency for which nonlinear energy transfers from higher‐frequency, smaller‐scale motions are balanced by dissipative processes and thus may be the low‐frequency limit of the hypothesized 2‐D cascade of energy from breaking waves to lower frequency motions.