skip to main content


Title: Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes
Abstract

Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined.

We compiled global gridded datasets on climate change, land‐use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world.

We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo‐Pacific with high climate change and high fishing).

We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers.

Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world.

 
more » « less
NSF-PAR ID:
10457644
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ; « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
People and Nature
Volume:
2
Issue:
2
ISSN:
2575-8314
Page Range / eLocation ID:
p. 380-394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study analysed threats to federally and State‐listed endangered and threatened animal taxa in California, United States, and how threats varied by taxa, habitat use, spatial extent, severity, geographical region and endemic status using threat categories from the International Union for Conservation of Nature (IUCN) Red List Threats Classification Scheme and information from scientific literature and reports.

    A majority of the taxa evaluated were associated with freshwater habitats and were endemic to California. The most threatened taxonomic groups were fish, followed by mammals and birds. The number of threats was mostly evenly distributed across the State's three geographical regions (i.e., North, Central and South), and no single region had a disproportionately high number of endangered animal taxa.

    Freshwater taxa were the most affected in nearly every threat category, suggesting that freshwater taxa are more threatened than their terrestrial and marine counterparts. In descending order, the most prominent threats across all taxa were habitat loss, invasive species, climate change and altered hydrology. Threats identified as high severity also tended to have a high spatial extent and vice versa.

    This study shows that the numerous freshwater faunas in California are disproportionately affected by threats also found in other freshwater systems and Mediterranean‐climate regions, highlighting the scope of the freshwater biodiversity crisis in California. Managing priorities to target the most pervasive threats to endangered freshwater taxa documented in this study will help safeguard freshwater biodiversity against human threats in California and beyond.

     
    more » « less
  2. Abstract

    Trait‐based ecology (TBE) has proven useful in the terrestrial realm and beyond for collapsing ecological complexity into traits that can be compared and generalized across species and scales. However, TBE for marine macroalgae is still in its infancy, motivating research to build the foundation of macroalgal TBE by leveraging lessons learned from other systems.

    Our objectives were to evaluate the utility of mean trait values (MTVs) across species, to explore the potential for intraspecific trait variability, and to identify macroalgal ecological strategies by clustering species with similar traits and testing for bivariate relationships between traits. To accomplish this, we measured thallus toughness, a trait associated with resistance to herbivory, and tensile strength, a trait associated with resistance to physical disturbance, in eight tropical macroalgal species across up to seven sites where they were found around Moorea, French Polynesia.

    We found interspecific trait variation generally exceeded intraspecific variation across species. Furthermore, MTV within species varied across sites, suggesting future research should focus on whether these traits are influenced by site‐specific differences in biotic and abiotic drivers. Species grouped into three clusters representing different ecological strategies: species that were defended against herbivores but not strong, species that were strong but not defended and species that were neither. Intraspecific standardized major axis regressions revealed five species exhibited significant or marginally significant positive relationships between these two traits, suggesting trait syndromes within species. Only one species exhibited a significant intraspecific trade‐off, as indicated by a negative regression slope.

    Synthesis. Our results point to three key takeaways that should provide a foundation to rapidly advance development of TBE for macroalgae in the future. First, our evidence supports the use of MTVs for macroalgae. Second, we identified significant spatial variability in macroalgal traits that may indicate an ability to respond to shifting environmental drivers. Third, measuring even a few traits can be a powerful tool to identify different ecological strategies to resist disturbances such as herbivory and removal by wave action. We hope these novel findings motivate future research into a wider suite of macroalgal traits, functions and strategies to further develop trait‐based approaches for marine macroalgae.

     
    more » « less
  3. Abstract

    Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems.

    Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest.

    Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale‐dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems.

    Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small‐scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing.

     
    more » « less
  4. Abstract Background

    The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300.

    Results

    Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios.

    Conclusion

    The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.

     
    more » « less
  5. Abstract

    Despite wide recognition of the importance of anthropogenically driven changes in large herbivore communities—including both declines in wildlife and increases in livestock—there remain large gaps in our knowledge about the impacts of these changes on plant communities, particularly when combined with concurrent changes in climate. Considering these prominent forms of global change in tandem enables us to better understand controls on savanna vegetation structure and diversity under real‐world conditions.

    We conducted a field experiment using complete and semi‐permeable herbivore exclosures to explore the difference in plant communities among sites with wild herbivores only, with cattle in addition to wild herbivores, and with no large herbivores. To understand variation in effects across climatic contexts, the experiment was replicated at three locations along a topoclimatic gradient in California. Critically, this is the first such experiment to compare cattle and wildlife impacts along an environmental gradient within a single controlled experiment.

    Vegetation structure responded strongly to herbivore treatment regardless of climate. Relative to the isolated effects of wildlife, exclusion of all large herbivores generally increased structural components related to cover and above‐ground biomass while the addition of cattle led to reductions in vegetation cover, litter, shading and standing biomass. Furthermore, wildlife had a consistent neutral or positive effect on plant diversity, while the effect of livestock addition was context dependent. Cattle had a neutral to strongly negative effect at low aridity, but a positive effect at high aridity. These results suggest that (a) herbivore effects can override climate effects on vegetation structure, (b) cattle addition can drive different effects on diversity and (c) herbivore effects on diversity are modulated by climate.

    Synthesis. Our results illustrate very distinctive shifts in plant communities between two realistic forms of change in ungulate herbivore assemblages—livestock addition and large herbivore losses—particularly for plant diversity responses, and that these responses vary across climatic contexts. This finding has important implications for the management and protection of plant biodiversity given that over a quarter of the Earth's land area is managed for livestock and climate regimes are changing globally.

     
    more » « less