Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains (10%–50%) and moderate stress (∼100 kPa). This Tutorial describes the physical basis underlying the operation of DEA's, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators. These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields, this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing between permanent and “soft” breakdown, as well as “self-clearing” and its relation to proof testing to increase device reliability. New evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be discussed.
Dielectric elastomer actuators (DEAs) are soft electromechanical devices that exhibit large energy densities and fast actuation rates. They are typically produced by planar methods and, thus, expand in‐plane when actuated. Here, reported is a method for fabricating 3D interdigitated DEAs that exhibit in‐plane contractile actuation modes. First, a conductive elastomer ink is created with the desired rheology needed for printing high‐fidelity, interdigitated electrodes. Upon curing, the electrodes are then encapsulated in a self‐healing dielectric matrix composed of a plasticized, chemically crosslinked polyurethane acrylate. 3D DEA devices are fabricated with tunable mechanical properties that exhibit breakdown fields of 25 V µm−1and actuation strains of up to 9%. As exemplars, printed are prestrain‐free rotational actuators and multi‐voxel DEAs with orthogonal actuation directions in large‐area, out‐of‐plane motifs.
more » « less- PAR ID:
- 10457660
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dielectric elastomer actuators (DEAs) exhibit fast actuation and high efficiencies, enabling applications in optics, wearable haptics, and insect-scale robotics. However, the non-uniformity and high sheet resistance of traditional soft electrodes based on nanomaterials limit the performance and operating frequency of the devices. In this work, we computationally investigate electrodes composed of arrays of stiff fiber electrodes. Aligning the fibers along one direction creates an electrode layer that exhibits zero stiffness in one direction and is predicted to possess high and uniform sheet resistance. A comprehensive parameter study of the fiber density and dielectric thickness reveals that the fiber density primary determines the electric field localization while the dielectric thickness primarily determines the unit cell stiffness. These trends identify an optimal condition for the actuation performance of the aligned electrode DEAs. This work demonstrates that deterministically designed electrodes composed of stiff materials could provide a new paradigm with the potential to surpass the performance of traditional soft planar electrodes.
-
Dielectric elastomer actuators (DEAs) are among the fastest and most energy-efficient, shape-morphing materials. To date, their shapes have been controlled using patterned electrodes or stiffening elements. While their actuated shapes can be analyzed for prescribed configurations of electrodes or stiffening elements (the forward problem), the design of DEAs that morph into target shapes (the inverse problem) has not been fully addressed. Here, we report a simple analytical solution for the inverse design and fabrication of programmable shape-morphing DEAs. To realize the target shape, two mechanisms are combined to locally control the actuation magnitude and direction by patterning the number of local active layers and stiff rings of varying shapes, respectively. Our combined design and fabrication strategy enables the creation of complex DEA architectures that shape-morph into simple target shapes, for instance, those with zero, positive, and negative Gaussian curvatures as well as complex shapes, such as a face.
-
Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts. Dielectric elastomer actuators (DEAs) are promising soft transducers, but typically exhibit low output forces and low energy densities when used without rigid supports. Here, we report a soft composite DEA made of strain-stiffening elastomers and carbon nanotube electrodes, which demonstrates a peak energy density of 19.8 J/kg. The result is close to the upper limit for natural muscle (0.4–40 J/kg), making these DEAs the highest-performance electrically driven soft artificial muscles demonstrated to date. To obtain high forces and displacements, we used low-density, ultrathin carbon nanotube electrodes which can sustain applied electric fields upward of 100 V/μm without suffering from dielectric breakdown. Potential applications include prosthetics, surgical robots, and wearable devices, as well as soft robots capable of locomotion and manipulation in natural or human-centric environments.
-
Madden, John D. ; Anderson, Iain A. ; Shea, Herbert R. (Ed.)Soft polymer actuators are in increasing demand due to their more fluid like motion and flexibility when actuated than compared with rigid actuators, which makes them valuable in diverse engineering applications. One of the main types of soft polymer actuators is the dielectric elastomer actuator, whose working principle is to apply a voltage potential difference between electrodes to reduce the thickness of the elastomeric material while expanding its area. This paper looks at manufacturing a micro soft polymer dielectric elastomer actuator utilizing two-photon polymerization 3D printing. The actuator contains micro channels that are filled with an electrode by using capillary action. A complex helical geometry is designed, printed, and tested for electrode filling capabilities. Quite a few obstacles are described in this paper including the use of a newly released two-photon polymerization resin which has limited supporting resources, as well as the complex helical geometry having a large compliance that vastly complicates its fabrication, post-processing, handling, electrode filling, electrode integration, and actuation testing. However, these challenges are overcome by using the standard printing recipes currently available for the resins, adding electrode isolation layers, and printing thicker elastomer zones for more structural support. The results found solidify the approach of filling microchannels with electrodes through capillary action and lead to further the focus and creation of multi-functional micro soft actuators.more » « less