The chemical stabilities of hybrid perovskite materials demand further improvement toward long‐term and large‐scale photovoltaic applications. Herein, the enhanced chemical stability of CH3NH3PbI3is reported by doping the divalent anion Se2−in the form of PbSe in precursor solutions to enhance the hydrogen‐bonding‐like interactions between the organic cations and the inorganic framework. As a result, in 100% humidity at 40 °C, the 10% w/w PbSe‐doped CH3NH3PbI3films exhibited >140‐fold stability improvement over pristine CH3NH3PbI3films. As the PbSe‐doped CH3NH3PbI3films maintained the perovskite structure, a top efficiency of 10.4% with 70% retention after 700 h aging in ambient air is achieved with an unencapsulated 10% w/w PbSe:MAPbI3‐based cell. As a bonus, the incorporated Se2−also effectively suppresses iodine diffusion, leading to enhanced chemical stability of the silver electrodes.
Metal halide perovskites (MHPs) have attracted broad research interest due to their outstanding optoelectronic performance. This performance has been attributed in part to the presence of polarization in these materials. However, the precise effects of chemical environment and strain condition on the polar states in MHPs have largely been missing. It is revealed for the first time that chemical gradient is directly coupled with strain gradient in CH3NH3PbI3. This strain–chemical gradient induces an electric polarization that can potentially affect charge carrier dynamics. Furthermore, it is unveiled that this electric polarization—unlike ferroelectricity that only exists in noncentrosymmetric materials—can be present in both tetragonal and cubic phases of CH3NH3PbI3. This suggests that the strain–chemical gradient induced polarization is a more convincing explanation of the outstanding photovoltaic properties of MHPs than the hotly debated ferroelectric polarization. Finally, a mechanism of how this polarization impacts photovoltaic action is proposed, which offers insightful advances in the development of MHPs.
more » « less- PAR ID:
- 10457680
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Hybrid organic inorganic perovskite solar cells based on CH3NH3PbI3have drastically increased in efficiency over the past several years and are competitive with decades‐old photovoltaic materials such as CdTe. Despite this impressive increase, significant issues still remain due to the intrinsic instability of CH3NH3PbI3which degrades into carcinogenic PbI2. Recently, double halide perovskites which use a pair of 1+–3+cations to replace Pb2+, such as Cs2InSbI6, and chalcogenide perovskites, such as BaZrS3, have been explored as potential replacements. In this work, double chalcogenide perovskites are explored to identify novel photovoltaic absorbers that can replace CH3NH3PbI3. Due to the large space of possible compounds, machine learning methods are used to classify materials as potential photovoltaic absorbers using data from the periodic table, eliminating wasteful computation. A random forest algorithm achieves a cross‐validation accuracy of 86.4% on the constructed data set. Over 450 possible replacements are identified via traditional and statistical methods with Ba2AlNbS6, Ba2GaNbS6, Ca2GaNbS6, Sr2InNbS6, and Ba2SnHfS6as the most promising alternative when thermodynamic stability, kinetic stability, and optical absorption are considered.
-
Abstract With power conversion efficiencies now reaching 24.2%, the major factor limiting efficient electricity generation using perovskite solar cells (PSCs) is their long‐term stability. In particular, PSCs have demonstrated rapid degradation under illumination, the driving mechanism of which is yet to be understood. It is shown that elevated device temperature coupled with excess charge carriers due to constant illumination is the dominant force in the rapid degradation of encapsulated perovskite solar cells under illumination. Cooling the device to 20 °C and operating at the maximum power point improves the stability of CH3NH3PbI3solar cells over 100× compared to operation under open circuit conditions at 60 °C. Light‐induced strain originating from photothermal‐induced expansion is also observed in CH3NH3PbI3, which excludes other light‐induced‐strain mechanisms. However, strain and electric field do not appear to play any role in the initial rapid degradation of CH3NH3PbI3solar cells under illumination. It is revealed that the formation of additional recombination centers in PSCs facilitated by elevated temperature and excess charge carriers ultimately results in rapid light‐induced degradation. Guidance on the best methods for measuring the stability of PSCs is also given.
-
Abstract Given the remarkable performance of hybrid organic–inorganic perovskites (HOIPs) in solar cells, light emitters, and photodetectors, the quest to advance the fundamental understanding of the photophysical properties in this class of materials remains highly relevant. Recently, the discovery of ferroic twin domains in HOIPs has renewed the debate of the ferroic effects on optoelectric processes. This work explores the interaction between light and ferroic twin domains in CH3NH3PbI3. Due to strain and chemical inhomogeneities, photogenerated electrons and holes show a preferential motion in the ferroelastic twin domains. Density functional theory (DFT) shows that electrons and holes result in lattice expansion in CH3NH3PbI3differently. Hence, light generates strain in the ferroelastic domains due to preferential photocarrier motion, leading to a screening of strain variation. X‐ray diffraction studies verify the DFT simulations and reveal that the photoinduced strain is light intensity dependent, and the photoexcitation is a prerequisite of inducing strain by light. This work extends the fundamental understanding of light‐ferroic interaction and offers guidance for developing functional devices.
-
Abstract Understanding interfacial reactions that occur between the active layer and charge‐transport layers can extend the stability of perovskite solar cells. In this study, the exposure of methylammonium lead iodide (CH3NH3PbI3) thin films prepared on poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)‐coated glass to 70% relative humidity (R.H.) leads to a perovskite crystal structure change from tetragonal to cubic within 2 days. Interface‐sensitive photoluminescence measurements indicate that the structural change originates at the PEDOT:PSS/perovskite interface. During exposure to 30% R.H., the same structural change occurs over a much longer time scale (>200 days), and a reflection consistent with the presence of (CH3)2NH2PbI3is detected to coexist with the cubic phase by X‐ray diffraction pattern. The authors propose that chemical interactions at the PEDOT:PSS/perovskite interface, facilitated by humidity, promote the formation of dimethylammonium, (CH3)2NH2+. The partial A‐site substitution of CH3NH3+for (CH3)2NH2+to produce a cubic (CH3NH3)1−
x [(CH3)2NH2]x PbI3phase explains the structural change from tetragonal to cubic during short‐term humidity exposure. When (CH3)2NH2+content exceeds its solubility limit in the perovskite during longer humidity exposures, a (CH3)2NH2+‐rich, hexagonal phase of (CH3NH3)1−x [(CH3)2NH2]x PbI3emerges. These interfacial interactions may have consequences for device stability and performance beyond CH3NH3PbI3model systems and merit close attention from the perovskite research community.