The amount of care parents provide to the offspring is complicated by an evolutionary conflict of interest (‘sexual conflict’) between the two parents. Recent theoretical models suggest that pair coordination of the provisioning may reduce this conflict and increase parent and offspring fitness. Despite empirical studies showing that pair coordination is common in avian species, it remains unclear how environmental and ecological conditions might promote or limit the ability of parents to coordinate care. We compared the level of pair coordination, measured as alternation and synchrony of the nest visits, of house wrens
Extra‐pair paternity (EPP) is a widespread phenomenon in birds. Researchers have long hypothesized that EPP must confer a fitness advantage to extra‐pair offspring (EPO), but empirical support for this hypothesis is definitively mixed. This could be because genetic benefits of EPP only exist in a subset of environmental contexts to which a population is exposed. From 2013 to 2015, we manipulated perceived predator density in a population of tree swallows (
- PAR ID:
- 10457703
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Evolutionary Biology
- Volume:
- 33
- Issue:
- 3
- ISSN:
- 1010-061X
- Format(s):
- Medium: X Size: p. 282-296
- Size(s):
- p. 282-296
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Troglodytes aedon pairs breeding in a rural (10 nests) and a suburban (9 nests) site and investigated how differences in parental behaviours were related to habitat composition, prey abundance and how they ultimately related to reproductive success. We found that parents alternated and synchronized their nest visits more in the rural site compared to the suburban one. The suburban site is characterized by a more fragmented habitat with more coniferous trees and less caterpillar availability. Offspring from the rural site were heavier at fledging than at the suburban site. Taken together, these results suggest that environmental conditions play an important role on the emergence of coordinated parental care and that considering environmental variables is pivotal to assess the fitness consequences of parental strategies. -
Large body size is an important determinant of individual fitness in many animal species, especially in island systems where habitat saturation may result in strong intraspecific competition for mates and breeding territories. Here we show that large body size is associated with benefits to yearling breeding and extra-pair mating in the Island Scrub-Jay (Aphelocoma insularis), endemic to Santa Cruz Island, California. This species is ~20% larger than its mainland congener, consistent with the island syndrome, indicating that body size may be a trait under selection. From 2009 to 2013, we quantified the reproductive success of a marked population of Island Scrub-Jays, tracked which yearlings acquired a breeding territory and bred, and measured the occurrence of extra-pair paternity. Two potential contributors to fitness were positively related to body size. Larger yearling males were more likely to breed, possibly due to greater behavioral dominance during aggressive encounters. Larger males were also less likely to lose paternity to extra-pair males and, anecdotally, extra-pair males were larger than the social male cuckolded. This study provides evidence that larger males may have a fitness advantage over smaller males by breeding earlier and avoiding paternity loss, but estimates of lifetime reproductive success are ultimately needed for Island Scrub-Jays and other long-lived species.more » « less
-
Abstract Offspring mortality varies dramatically among species with critical demographic and evolutionary ramifications, yet the causes of this variation remain unclear. Nests are widely used for breeding across taxa and thought to influence offspring mortality risk. Traditionally, more complex, enclosed nest structures are thought to reduce offspring predation by reducing the visibility of nest contents and muffling offspring sounds compared to open nests. Direct tests of the functional bases for nest structure influence on predation risk are lacking.
We used experiments and 10 years of observational data to examine how nest structure influences nest predation risk in a diverse community of tropical songbirds. First, we examined how nest size was related to nest structure and nest predation rates across species. Second, we assessed how nest structure influences the detectability of nestling begging calls both in field and in laboratory settings. Finally, we examined how the acoustic properties of different nest structures influence nest predation risk. Specifically, we experimentally broadcast begging calls from open and enclosed nests to determine how auditory cues and nest structure interact to affect predation on plasticine and quail eggs. We also tested whether nest structure was associated with differences in nest predation rates between the incubation (no begging cues) and nestling (begging cues) stages.
We found that enclosed nests are larger than open nests after accounting for adult size, and larger nests had increased predation rates. Moreover, enclosed nests did not consistently alter nestling begging calls in ways that reduce the likelihood of predation compared to open nests. Indeed, begging cues increased predation rates for enclosed but not open‐cup nests in our playback experiment, and nest predation rates showed greater increases after hatching in enclosed than open‐cup nests.
Ultimately, enclosed nests do not necessarily provide greater predation benefits than open nests in contrast to long‐standing theory.
A free
plain language summary can be found within the Supporting Information of this article. -
Abstract Predator fear effects influence reproductive outcomes in many species. In non‐urban systems, passerines often respond to predator cues by reducing parental investment, resulting in smaller and lighter nestlings. Since trophic interactions in urban areas are highly altered, it is unclear how passerines respond to fear effects in human‐altered landscapes. Nestlings of passerines in urban areas also tend to be smaller and lighter than their rural counterparts and are often exposed to high densities of potential predators yet experience lower per capita predation—the predation paradox. We suggest fear effects in urban habitats could be a significant mechanism influencing nestling condition in birds, despite lowered predation rates. We manipulated exposure of nesting birds to adult‐consuming predator risk in residential yards across a gradient of urbanization to determine the relative influence of urbanization and fear on nestling condition. We found nestlings had reduced mass in nests exposed to predator playbacks as well as in more urban areas. Despite lower per capita predation rates in urban areas, fear effects from increased predator densities may influence passerine fitness through reduced nestling condition. As urban development expands, biodiversity conservation hinges on a deeper mechanistic understanding of how urbanization affects reproductive outcomes.
-
Abstract Parental exposure to environmental stress can influence phenotypic plasticity by offspring developing under that stressor. Transgenerational effects may also reshape natural selection on developmental plasticity by influencing its fitness consequences and expression of its genetic variation. We tested these hypotheses in the purple sea urchin
Strongylocentrotus purpuratus , an invertebrate exposed to coastal upwelling (periods of low temperature and pH impacting biomineralization and performance). We conditioned parents and larvae to experimental upwelling and integrated RNA-seq, phenotyping of body size and biomineralization, and measured fitness-correlated traits in a quantitative genetic experiment. Larvae developing under upwelling induced widespread differential expression (DE), decreased biomineralization, and reduced body size. We detected fitness benefits for increased biomineralization and reduced size under upwelling indicative of adaptive plasticity, but only when larvae were spawned from parents exposed to upwelling. Larval DE was largely associated with adaptive phenotypic plasticity. Negative genetic correlation in DE was abundant between genes associated with adaptive plasticity. However, genetic correlations in DE associated with body size plasticity were significantly more positive in larvae from upwelling-exposed parents. These results show that transgenerational effects modify the fitness landscape and genetic architecture of phenotypic plasticity and its regulatory pathways.