skip to main content


Title: Tropical Cyclogenesis From Self‐Aggregated Convection in Numerical Simulations of Rotating Radiative‐Convective Equilibrium
Abstract

In a modeled environment of rotating radiative‐convective equilibrium (RCE), convective self‐aggregation may take the form of spontaneous tropical cyclogenesis. We investigate the processes leading to tropical cyclogenesis in idealized simulations with a three‐dimensional cloud‐permitting model configured in rotating RCE, in which the background planetary vorticity is varied acrossf‐plane cases to represent a range of deep tropical and near‐equatorial environments. Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic‐scale forcing. We examine the dynamic and thermodynamic evolution of cyclogenesis in these experiments and compare the physical mechanisms to current theories. All simulations with planetary vorticity corresponding to latitudes from 10°–20° generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five‐member ensemble of 20° simulations, indicating large stochastic variability. Shared across the 10°–20° group is the emergence of a midlevel vortex in the days leading to genesis, which has dynamic and thermodynamic implications on its environment that facilitate the spin‐up of a low‐level vortex. Tropical cyclogenesis is possible in this model at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self‐aggregates into a quasicircular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by strong near‐surface inflow that is already established days prior. Other experiments at these lower Coriolis parameters instead self‐aggregate into a nonrotating elongated band and fail to undergo cyclogenesis over the 100‐day simulation.

 
more » « less
Award ID(s):
1830724
NSF-PAR ID:
10457715
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
12
Issue:
5
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Tropical cyclogenesis (TCG) is a multiscale process that involves interactions between large-scale circulation and small-scale convection. A near-global aquaplanet cloud-resolving model (NGAqua) with 4-km horizontal grid spacing that produces tropical cyclones (TCs) is used to investigate TCG and its predictability. This study analyzes an ensemble of three 20-day NGAqua simulations, with initial white-noise perturbations of low-level humidity. TCs develop spontaneously from the northern edge of the intertropical convergence zone (ITCZ), where large-scale flows and tropical convection provide necessary conditions for barotropic instability. Zonal bands of positive low-level absolute vorticity organize into cyclonic vortices, some of which develop into TCs. A new algorithm is developed to track the cyclonic vortices. A vortex-following framework analysis of the low-level vorticity budget shows that vertical stretching of absolute vorticity due to convective heating contributes positively to the vorticity spinup of the TCs. A case study and composite analyses suggest that sufficient humidity is key for convective development. TCG in these three NGAqua simulations undergoes the same series of interactions. The locations of cyclonic vortices are broadly predetermined by planetary-scale circulation and humidity patterns associated with ITCZ breakdown, which are predictable up to 10 days. Whether and when the cyclonic vortices become TCs depend on the somewhat more random feedback between convection and vorticity. 
    more » « less
  2. Abstract

    Observations from the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT), Genesis and Rapid Intensification Processes (GRIP), and Intensity Forecast Experiment (IFEX) field campaigns are analyzed to investigate the mesoscale processes leading to the tropical cyclogenesis of Hurricane Karl (2010). Research aircraft missions provided Doppler radar, in situ flight level, and dropsonde data documenting the structural changes of the predepression disturbance. Following the pre-Karl wave pouch, variational analyses at the meso-β and meso-α scales suggest that the convective cycle in Karl alternately built the low- and midlevel circulations leading to genesis episodically rather than through a sustained lowering of the convective mass flux from increased stabilization. Convective bursts that erupt in the vorticity-rich environment of the recirculating pouch region enhance the low-level meso-β- and meso-α-scale circulation through vortex stretching. As the convection wanes, the resulting stratiform precipitation strengthens the midlevel circulation through convergence associated with ice microphysical processes, protecting the disturbance from the intrusion of dry environmental air. Once the column saturation fraction returns to a critical value, a subsequent convective burst below the midlevel circulation further enhances the low-level circulation, and the convective cycle repeats. The analyses suggest that the onset of deep convection and associated low-level spinup were closely related to the coupling of the vorticity and moisture fields at low and midlevels. Our interpretation of the observational analysis presented in this study reaffirms a primary role of deep convection in the genesis process and provides a hypothesis for the supporting role of stratiform precipitation and the midlevel vortex.

     
    more » « less
  3. Abstract

    The spontaneous self-aggregation (SA) of convection in idealized model experiments highlights the importance of interactions between tropical convection and the surrounding environment. The authors have shown that SA fundamentally changes with the background rotation in previousf-plane simulations, in terms of both the resulting forms of organized convection and the relative roles of the physical feedbacks driving them. This study considers the dependence of SA on rotation in one large domain on theβplane, introducing an additional layer of complexity. Simulations are performed with uniform thermal forcing and explicit convection. Focuses include statistical and structural analysis of the convective modes, process-oriented diagnostics of how they develop, and resulting mean states. Two regimes of SA emerge within the first 15 days, separated by a critical zone wherefis analogous to 10°–15° latitude. Organized convection at near-equatorial values offprimarily consists of convectively coupled Kelvin waves. Wind speed–surface enthalpy flux feedbacks are the dominant process driving moisture variability early on, then clear-sky shortwave radiative feedbacks are strongest in wave maintenance. In contrast, at higherf, numerous tropical cyclones develop and coexist, dominated by surface flux and longwave processes. Tropical cyclogenesis is most pronounced at intermediatef(analogous to 25°–40°), but are longer-lived at higherf. The resulting modes of SA at lowfdiffer between theseβ-plane simulations (convectively coupled waves) and priorf-plane simulations (weak tropical cyclones or nonrotating clusters). Otherwise, these results provide further evidence for the changing roles of radiative, surface flux, and advective processes in influencing SA asfchanges, as found in our previous study.

    Significance Statement

    In model simulations, convection often self-organizes due to interactions with its surrounding environment. These interactions are relevant in the real-world organization of rainfall and clouds, and may thus be useful to understand for improved prediction of tropical weather and climate. Previous work using a set of simple model experiments with constant Coriolis force showed that at different latitudes, different processes dominate, and different types of organized convection result. This study verifies that finding using a more complex and realistic model, where the Coriolis force varies within the domain to resemble different latitudes. Specifically, the convection here self-organizes into atmospheric waves (periodic disturbances) at low latitudes, and tropical cyclones at high latitudes.

     
    more » « less
  4. Abstract

    Recent numerical modeling and observational studies indicate the importance of vortical hot towers (VHTs) in the transformation of a tropical disturbance to a tropical depression. It has recently been recognized that convective-scale downdraft outflows that form within VHTs also preferentially develop positive vertical vorticity around their edges, which is considerably larger in magnitude than ambient values. During a numerical simulation of tropical cyclogenesis it is found that particularly strong low-level convectively induced vorticity anomalies (LCVAs) occasionally form as convection acts on the enhanced vorticity at the edges of cold pools. These features cycle about the larger-scale circulation and are associated with a coincident pressure depression and low-level wind intensification. The LCVAs studied are considerably deeper than the vorticity produced at the edges of VHT cold pool outflows, and their evolution is associated with persistent convection and vortex merger events that act to sustain them. Herein, we highlight the formation and evolution of two representative LCVAs and discuss the environmental parameters that eventually become favorable for one LCVA to reach the center of a larger-scale circulation as tropical cyclogenesis occurs.

     
    more » « less
  5. Abstract

    Tropical cyclone formation and evolution at, or near, the Equator is explored using idealized three‐dimensional model simulations, starting from a prescribed, initial, weak counterclockwise rotating vortex in an otherwise quiescent,nonrotatingenvironment. Three simulations are carried out in which the maximum tangential wind speed (5 m s) is specified at an initial radius of 50, 100, or 150 km. After a period of gestation lasting between 30 and 60 hr, the vortices intensify rapidly, the evolution being similar to that for vortices away from the Equator. In particular, the larger the initial vortex size, the longer the gestation period, the larger the maximum intensity attained, and the longer the vortex lifetime. Beyond a few days, the vortices decay as the cyclonic vorticity source provided by the initial vortex is depleted and negative vorticity surrounding the vortex core is drawn inwards by the convectively driven overturning circulation. In these negative vorticity regions, the flow is inertially/centrifugally unstable. The vortex evolution during the mature and decay phases differs from that in simulations away from the Equator, where inertially unstable regions are much more limited in area. Vortex decay in the simulations appears to be related intimately to the development of inertial instability, which is accompanied by an outward‐propagating band of deep convection. The degree to which this band of deep convection is realistic is unknown.

     
    more » « less