skip to main content


Title: Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology
Summary

The emergence of critical zone (CZ) science has provided an integrative platform for investigating plant ecophysiology in the context of landscape evolution, weathering and hydrology. The CZ lies between the top of the vegetation canopy and fresh, chemically unaltered bedrock and plays a pivotal role in sustaining life. We consider what the CZ perspective has recently brought to the study of plant ecophysiology. We specifically highlight novel research demonstrating the importance of the deeper subsurface for plant water and nutrient relations. We also point to knowledge gaps and research opportunities, emphasising, in particular, greater focus on the roles of deep, nonsoil resources and how those resources influence and coevolve with plants as a frontier of plant ecophysiological research.

 
more » « less
Award ID(s):
1331940
NSF-PAR ID:
10457741
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
226
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
p. 666-671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Water in rivers is delivered via the critical zone (CZ)—the living skin of the Earth, extending from the top of the vegetation canopy through the soil and down to fresh bedrock and the bottom of significantly active groundwater. Consequently, the success of stream‐rearing salmonids depends on the structure and resulting water storage and release processes of this zone. Physical processes below the land surface (the subsurface component of the CZ) ultimately determine how landscapes “filter” climate to manifest ecologically significant streamflow and temperature regimes. Subsurface water storage capacity of the CZ has emerged as a key hydrologic variable that integrates many of these subsurface processes, helping to explain flow regimes and terrestrial plant community composition. Here, we investigate how subsurface storage controls flow, temperature, and energetic regimes that matter for salmonids. We illustrate the explanatory power of broadly applicable, storage‐based frameworks across a lithological gradient that spans the Eel River watershed of California. Study sites are climatically similar but differ in their geologies and consequent subsurface CZ structure that dictates water storage dynamics, leading to dramatically different hydrographs, temperature, and riparian regimes—with consequences for every aspect of salmonid life history. Lithological controls on the development of key subsurface CZ properties like storage capacity suggest a heretofore unexplored link between salmonids and geology, adding to a rich literature that highlights various fluvial and geomorphic influences on salmonid diversity and distribution. Rapidly advancing methods for estimating and observing subsurface water storage dynamics at large scales present new opportunities for more clearly identifying landscape features that constrain the distributions and abundances of organisms, including salmonids, at watershed scales.

     
    more » « less
  2. Summary

    Evolutionary relationships are likely to play a significant role in shaping plant physiological and structural traits observed in contemporary taxa. We review research on phylogenetic signal and correlated evolution in plant–water relation traits, which play important roles in allowing plants to acquire, use, and conserve water. We found more evidence for a phylogenetic signal in structural traits (e.g. stomatal length and stomatal density) than in physiological traits (e.g. stomatal conductance and water potential at turgor loss). Although water potential at turgor loss is the most‐studied plant–water relation trait in an evolutionary context, it is the only trait consistently found to not have a phylogenetic signal. Correlated evolution was common among traits related to water movement efficiency and hydraulic safety in both leaves and stems. We conclude that evidence for phylogenetic signal varies depending on: the methodology used for its determination, that is, model‐based approaches to determine phylogenetic signal such as Blomberg'sKor Pagel's λ vs statistical approaches such as ANOVAs with taxonomic classification as a factor; on the number of taxa studied (size of the phylogeny); and the setting in which plants grow (field vs common garden). More explicitly and consistently considering the role of evolutionary relationships in shaping plant ecophysiology could improve our understanding of how traits compare among species, how traits are coordinated with one another, and how traits vary with the environment.

     
    more » « less
  3. Abstract

    Life on Earth depends on the conversion of solar energy to chemical energy by plants through photosynthesis. A fundamental challenge in optimizing photosynthesis is to adjust leaf angles to efficiently use the intercepted sunlight under the constraints of heat stress, water loss and competition. Despite the importance of leaf angle, until recently, we have lacked data and frameworks to describe and predict leaf angle dynamics and their impacts on leaves to the globe. We review the role of leaf angle in studies of ecophysiology, ecosystem ecology and earth system science, and highlight the essential yet understudied role of leaf angle as an ecological strategy to regulate plant carbon–water–energy nexus and to bridge leaf, canopy and earth system processes. Using two models, we show that leaf angle variations have significant impacts on not only canopy‐scale photosynthesis, energy balance and water use efficiency but also light competition within the forest canopy. New techniques to measure leaf angles are emerging, opening opportunities to understand the rarely‐measured intraspecific, interspecific, seasonal and interannual variations of leaf angles and their implications to plant biology and earth system science. We conclude by proposing three directions for future research.

     
    more » « less
  4. Abstract

    The structure of the critical zone (CZ) is a product of feedbacks among hydrologic, climatic, biotic, and chemical processes. Past research within snow‐dominated systems has shown that aspect‐dependent solar radiation inputs can produce striking differences in vegetation composition, topography, and soil depth between opposing hillslopes. However, far fewer studies have evaluated the role of microclimates on CZ development within rain‐dominated systems, especially below the soil and into weathered bedrock. To address this need, we characterized the CZ of a north‐facing and south‐facing slope within a first‐order headwater catchment located in central coast California. We combined terrain analysis of vegetation distribution and topography with soil pit characterization, geophysical surveys and hydrologic measurements between slope‐aspects. We documented denser vegetation and higher shallow soil moisture on north facing slopes, which matched previously documented observations in snow‐dominated sites. However, average topographic gradients were 24° and saprolite thickness was approximately 6 m across both hillslopes, which did not match common observations from the literature that showed widespread asymmetry in snow‐dominated systems. These results suggest that dominant processes for CZ evolution are not necessarily transferable across regions. Thus, there is a continued need to expand CZ research, especially in rain‐dominated and water‐limited systems. Here, we present two non‐exclusive mechanistic hypotheses that may explain these unexpected similarities in slope and saprolite thickness between hillslopes with opposing aspects.

     
    more » « less
  5. Abstract

    Earth's Critical Zone (CZ), the near‐surface layer where rock is weathered and landscapes co‐evolve with life, is profoundly influenced by the type of underlying bedrock. Previous studies employing the CZ framework have focused primarily on landscapes dominated by silicate rocks. However, carbonate rocks crop out on approximately 15% of Earth's ice‐free continental surface and provide important water resources and ecosystem services to ∼1.2 billion people. Unlike silicates, carbonate minerals weather congruently and have high solubilities and rapid dissolution kinetics, enabling the development of large, interconnected pore spaces and preferential flow paths that restructure the CZ. Here we review the state of knowledge of the carbonate CZ, exploring parameters that produce contrasts in the CZ in different carbonate settings and identifying important open questions about carbonate CZ processes. We introduce the concept of a carbonate‐silicate CZ spectrum and examine whether current conceptual models of the CZ, such as the conveyor model, can be applied to carbonate landscapes. We argue that, to advance beyond site‐specific understanding and develop a more general conceptual framework for the role of carbonates in the CZ, we need integrative studies spanning both the carbonate‐silicate spectrum and a range of carbonate settings.

     
    more » « less