skip to main content


Title: Insights into allosteric control of microtubule dynamics from a buried β‐tubulin mutation that causes faster growth and slower shrinkage
Abstract

αβ‐tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule‐stabilizing effects (slower shrinking) of the β:T238A mutation we previously observed using yeast αβ‐tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, β:T238A human microtubules grew faster than wild‐type and the mutation did not appear to attenuate the conformational change associated with guanosine 5′‐triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly‐dependent conformational change in αβ‐tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the β:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.

 
more » « less
NSF-PAR ID:
10457748
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
29
Issue:
6
ISSN:
0961-8368
Page Range / eLocation ID:
p. 1429-1439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The neuronal cytoskeleton performs incredible feats during nervous system development. Extension of neuronal processes, migration, and synapse formation rely on the proper regulation of microtubules. Mutations that disrupt the primary α‐tubulin expressed during brain development,TUBA1A, are associated with a spectrum of human brain malformations. One model posits thatTUBA1Amutations lead to a reduction in tubulin subunits available for microtubule polymerization, which represents a haploinsufficiency mechanism. We propose an alternative model for the majority of tubulinopathy mutations, in which the mutant tubulin polymerizes into the microtubule lattice to dominantly “poison” microtubule function. Nine distinct α‐tubulin and ten β‐tubulin genes have been identified in the human genome. These genes encode similar tubulin proteins, called isotypes. Multiple tubulin isotypes may partially compensate for heterozygous deletion of a tubulin gene, but may not overcome the disruption caused by missense mutations that dominantly alter microtubule function. Here, we describe disorders attributed to haploinsufficiency versus dominant negative mechanisms to demonstrate the hallmark features of each disorder. We summarize literature on mouse models that represent both knockout and point mutants in tubulin genes, with an emphasis on how these mutations might provide insight into the nature of tubulinopathy patient mutations. Finally, we present data from a panel ofTUBA1Atubulinopathy mutations generated in yeast α‐tubulin that demonstrate that α‐tubulin mutants can incorporate into the microtubule network and support viability of yeast growth. This perspective on tubulinopathy mutations draws on previous studies and additional data to provide a fresh perspective on howTUBA1Amutations disrupt neurodevelopment.

     
    more » « less
  2. ABSTRACT The microtubule cytoskeleton is assembled from the α- and β-tubulin subunits of the canonical tubulin heterodimer, which polymerizes into microtubules, and a small number of other family members, such as γ-tubulin, with specialized functions. Overall, microtubule function involves the collective action of multiple α- and β-tubulin isotypes. However, despite 40 years of awareness that most eukaryotes harbor multiple tubulin isotypes, their role in the microtubule cytoskeleton has remained relatively unclear. Various model organisms offer specific advantages for gaining insight into the role of tubulin isotypes. Whereas simple unicellular organisms such as yeast provide experimental tractability that can facilitate deeper access to mechanistic details, more complex organisms, such as the fruit fly, nematode and mouse, can be used to discern potential specialized functions of tissue- and structure-specific isotypes. Here, we review the role of α- and β-tubulin isotypes in microtubule function and in associated tubulinopathies with an emphasis on the advances gained using model organisms. Overall, we argue that studying tubulin isotypes in a range of organisms can reveal the fundamental mechanisms by which they mediate microtubule function. It will also provide valuable perspectives on how these mechanisms underlie the functional and biological diversity of the cytoskeleton. 
    more » « less
  3. Théry, Manuel (Ed.)
    How temperature specifically affects microtubule dynamics and how these lead to changes in microtubule networks in cells have not been established. We investigated these questions in budding yeast, an organism found in diverse environments and therefore predicted to exhibit dynamic microtubules across a broad temperature range. We measured the dynamics of GFP-labeled microtubules in living cells and found that lowering temperature from 37°C to 10°C decreased the rates of both polymerization and depolymerization, decreased the amount of polymer assembled before catastrophes, and decreased the frequency of microtubule emergence from nucleation sites. Lowering to 4°C caused rapid loss of almost all microtubule polymer. We provide evidence that these effects on microtubule dynamics may be explained in part by changes in the cofactor-dependent conformational dynamics of tubulin proteins. Ablation of tubulin-binding cofactors (TBCs) further sensitizes cells and their microtubules to low temperatures, and we highlight a specific role for TBCB/Alf1 in microtubule maintenance at low temperatures. Finally, we show that inhibiting the maturation cycle of tubulin by using a point mutant in β-tubulin confers hyperstable microtubules at low temperatures and rescues the requirement for TBCB/Alf1 in maintaining microtubule polymer at low temperatures. Together, these results reveal an unappreciated step in the tubulin cycle. 
    more » « less
  4. Kinesin-mediated transport along microtubules is critical for axon development and health. Mutations in the kinesin Kif21a, or the microtubule subunit β-tubulin, inhibit axon growth and/or maintenance resulting in the eye-movement disorder congenital fibrosis of the extraocular muscles (CFEOM). While most examined CFEOM-causing β-tubulin mutations inhibit kinesin–microtubule interactions, Kif21a mutations activate the motor protein. These contrasting observations have led to opposed models of inhibited or hyperactive Kif21a in CFEOM. We show that, contrary to other CFEOM-causing β-tubulin mutations, R380C enhances kinesin activity. Expression of β-tubulin-R380C increases kinesin-mediated peroxisome transport in S2 cells. The binding frequency, percent motile engagements, run length and plus-end dwell time of Kif21a are also elevated on β-tubulin-R380C compared with wildtype microtubules in vitro. This conserved effect persists across tubulins from multiple species and kinesins from different families. The enhanced activity is independent of tail-mediated kinesin autoinhibition and thus utilizes a mechanism distinct from CFEOM-causing Kif21a mutations. Using molecular dynamics, we visualize how β-tubulin-R380C allosterically alters critical structural elements within the kinesin motor domain, suggesting a basis for the enhanced motility. These findings resolve the disparate models and confirm that inhibited or increased kinesin activity can both contribute to CFEOM. They also demonstrate the microtubule’s role in regulating kinesins and highlight the importance of balanced transport for cellular and organismal health. 
    more » « less
  5. Abstract

    The axon-initial-segment (AIS) of mature neurons contains microtubule (MT) fascicles (linear bundles) implicated as retrograde diffusion barriers in the retention of MT-associated protein (MAP) tau inside axons. Tau dysfunction and leakage outside of the axon is associated with neurodegeneration. We report on the structure of steady-state MT bundles in varying concentrations of Mg2+or Ca2+divalent cations in mixtures containing αβ-tubulin, full-length tau, and GTP at 37 °C in a physiological buffer. A concentration-time kinetic phase diagram generated by synchrotron SAXS reveals a wide-spacing MT bundle phase (Bws), a transient intermediate MT bundle phase (Bint), and a tubulin ring phase. SAXS with TEM of plastic-embedded samples provides evidence of a viscoelastic intervening network (IN) of complexes of tubulin oligomers and tau stabilizing MT bundles. In this model, αβ-tubulin oligomers in the IN are crosslinked by tau’s MT binding repeats, which also link αβ-tubulin oligomers to αβ-tubulin within the MT lattice. The model challenges whether the cross-bridging of MTs is attributed entirely to MAPs. Tubulin-tau complexes in the IN or bound to isolated MTs are potential sites for enzymatic modification of tau, promoting nucleation and growth of tau fibrils in tauopathies.

     
    more » « less