skip to main content


Title: Are you what you eat? A highly transient and prey‐influenced gut microbiome in the grey house spider Badumna longinqua
Abstract

Stable core microbial communities have been described in numerous animal species and are commonly associated with fitness benefits for their hosts. Recent research, however, highlights examples of species whose microbiota are transient and environmentally derived. Here, we test the effect of diet on gut microbial community assembly in the spiderBadumna longinqua. Using 16S rRNA gene amplicon sequencing combined with quantitative PCR, we analyzed diversity and abundance of the spider's gut microbes, and simultaneously characterized its prey communities using nuclear rRNA markers. We found a clear correlation between community similarity of the spider's insect prey and gut microbial DNA, suggesting that microbiome assembly is primarily diet‐driven. This assumption is supported by a feeding experiment, in which two types of prey—crickets and fruit flies—both substantially altered microbial diversity and community similarity between spiders, but did so in different ways. After cricket consumption, numerous cricket‐derived microbes appeared in the spider's gut, resulting in a rapid homogenization of microbial communities among spiders. In contrast, few prey‐associated bacteria were detected after consumption of fruit flies; instead, the microbial community was remodelled by environmentally sourced microbes, or abundance shifts of rare taxa in the spider's gut. The reshaping of the microbiota by both prey taxa mimicked a stable core microbiome in the spiders for several weeks post feeding. Our results suggest that the spider's gut microbiome undergoes pronounced temporal fluctuations, that its assembly is dictated by the consumed prey, and that different prey taxa may remodel the microbiota in drastically different ways.

 
more » « less
NSF-PAR ID:
10457859
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
29
Issue:
5
ISSN:
0962-1083
Page Range / eLocation ID:
p. 1001-1015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The diversification of a host lineage can be influenced by both the external environment and its assemblage of microbes. Here, we use a young lineage of spiders, distributed along a chronologically arranged series of volcanic mountains, to investigate how their associated microbial communities have changed as the spiders colonized new locations. Using the stick spiderAriamnes waikula(Araneae, Theridiidae) on the island of Hawaiʻi, and outgroup taxa on older islands, we tested whether each component of the “holobiont” (spider hosts, intracellular endosymbionts and gut microbial communities) showed correlated signatures of diversity due to sequential colonization from older to younger volcanoes. To investigate this, we generated ddRAD data for the host spiders and 16S rRNA gene amplicon data from their microbiota. We expected sequential colonizations to result in a (phylo)genetic structuring of the host spiders and in a diversity gradient in microbial communities. The results showed that the hostA.waikulais indeed structured by geographical isolation, suggesting sequential colonization from older to younger volcanoes. Similarly, the endosymbiont communities were markedly different betweenAriamnesspecies on different islands, but more homogeneous amongA.waikulapopulations on the island of Hawaiʻi. Conversely, the gut microbiota, which we suspect is generally environmentally derived, was largely conserved across all populations and species. Our results show that different components of the holobiont respond in distinct ways to the dynamic environment of the volcanic archipelago. This highlights the necessity of understanding the interplay between different components of the holobiont, to properly characterize its evolution.

     
    more » « less
  2. Hird, Sarah M. (Ed.)
    The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas ( Crocuta crocuta ) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas’ guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host’s life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis. 
    more » « less
  3. Abstract

    Freshwater mussels are important for nutrient cycling and ecosystem health as they filter feed on their surrounding water. This filter feeding makes these bivalves especially sensitive to conditions in their environment. Gut microbial communities (microbiomes) have been recognised as important to both host organism and ecosystem health; however, how freshwater mussel microbiomes are organised and influenced is unclear.

    In this study, the gut bacterial microbiome of Threeridge mussel,Amblema plicata, was compared across two river basins, five rivers, and nine local sites in the south‐eastern U.S.A. Mussel gut tissue was dissected, DNA extracted, and the microbiome characterised by high throughput sequencing of the V4 region of the 16S ribosomal RNA gene.

    Planctomycetes, Firmicutes, and Cyanobacteria were the most common bacterial phyla within the guts of all sampledA.plicata. However, the relative abundances of these major bacterial phyla differed between mussels sampled from different rivers and river basins, as did the relative abundance of specific bacterial operational taxonomic units (OTUs). Despite these differences, a core microbiome was identified across all mussels, with eight OTUs being consistent members of theA.plicatamicrobiome at all sites, the most abundant OTU identifying as a member of the family Planctomycetaceae. Geographic distance between sites was not correlated with similarity in the structure of the gut microbiome, which was more related to site physicochemistry.

    Overall, these results suggest that while physicochemical conditions affect the composition of transient bacteria in the Threeridge mussel gut microbiome, the core microbiome is largely unaffected, and a portion of theA.plicatamicrobiome is retained regardless of the river system.

    How long transient bacteria remain in the gut, and to what extent these transient microbes aid in host function is still unknown. Core microbiota have been found to aid in multiple functions within animal hosts, and within freshwater mussels this core microbiome may aid in nutrient processing and cycling. Therefore, it is important to look at both transient and core microbes when studying the structure of freshwater invertebrate microbiomes.

     
    more » « less
  4. Abstract Objectives

    Environmental and ecological factors, such as geographic range, anthropogenic pressure, group identity, and feeding behavior are known to influence the gastrointestinal microbiomes of great apes. However, the influence of individual host traits such as age and sex, given specific dietary and social constraints, has been less studied. The objective of this investigation was to determine the associations between an individual's age and sex on the diversity and composition of the gut microbiome in wild western lowland gorillas.

    Materials and Methods

    Publicly available 16S rRNA data generated from fecal samples of different groups ofGorilla gorillagorillain the Central African Republic were downloaded and bioinformatically processed. The groups analyzed included habituated, partially habituated and unhabituated gorillas, sampled during low fruit (dry,n = 28) and high fruit (wet,n = 82) seasons. Microbial community analyses (alpha and beta diversity and analyses of discriminant taxa), in tandem with network‐wide approaches, were used to (a) mine for specific age and sex based differences in gut bacterial community composition and to (b) asses for gut community modularity and bacterial taxa with potential functional roles, in the context of seasonal food variation, and social group affiliation.

    Results

    Both age and sex significantly influenced gut microbiome diversity and composition in wild western lowland gorillas. However, the largest differences were observed between infants and adults in habituated groups and between adults and immature gorillas within all groups, and across dry and wet seasons. Specifically, although adults always showed greater bacterial richness than infants and immature gorillas, network‐wide analyses showed higher microbial community complexity and modularity in the infant gorilla gut. Sex‐based microbiome differences were not evident among adults, being only detected among immature gorillas.

    Conclusions

    The results presented point to a dynamic gut microbiome inGorillaspp., associated with ontogeny and individual development. Of note, the gut microbiomes of breastfeeding infants seemed to reflect early exposure to complex, herbaceous vegetation. Whether increased compositional complexity of the infant gorilla gut microbiome is an adaptive response to an energy‐limited diet and an underdeveloped gut needs to be further tested. Overall, age and sex based gut microbiome differences, as shown here, maybe mainly attributed to access to specific feeding sources, and social interactions between individuals within groups.

     
    more » « less
  5. Background Insects are the most diverse group of animals which have established intricate evolutionary interactions with bacteria. However, the importance of these interactions is still poorly understood. Few studies have focused on a closely related group of insect species, to test the similarities and differences between their microbiota. Heliconius butterflies are a charismatic recent insect radiation that evolved the unique ability to use pollen as a protein source, which affected life history traits and resulted in an elevated speciation rates. We hypothesize that different Heliconius butterflies sharing a similar trophic pollen niche, harbor a similar gut flora within species, population and sexes. Methods To test our hypothesis, we characterized the microbiota of 38 adult male and female butterflies representing six species of Heliconius butterflies and 2 populations of the same species. We sequenced the V4 region of the 16S rRNA gene with the Roche 454 system and analyzed the data with standard tools for microbiome analysis. Results Overall, we found a low microbial diversity with only 10 OTUs dominating across all individuals, mostly Proteobacteria and Firmicutes, which accounted for  99.5% of the bacterial reads. When rare reads were considered, we identified a total of 406 OTUs across our samples. We identified reads within Phyla Chlamydiae , found in 5 butterflies of four species. Interestingly, only three OTUs were shared among all 38 individuals ( Bacillus, Enterococcus and Enterobacteriaceae ). Altogether, the high individual variation overshadowed species and sex differences. Thus, bacterial communities were not structured randomly with 13% of beta-diversity explained by species, and 40 rare OTUs being significantly different across species. Finally, 13 OTUs, including the intercellular symbiont Spiroplasma, varied significantly in relative abundance between males and females. Discussion The Heliconius microbial communities in these 38 individuals show a low diversity with few differences in the rare microbes between females, males, species or populations. Indeed, Heliconius butterflies, similarly to other insects, are dominated by few OTUs, mainly from Proteobacteria and Firmicutes. The overall low microbial diversity observed contrasts with the high intra-species variation in microbiome composition. This could indicate that much of the microbiome maybe acquired from their surroundings. The significant differences between species and sexes were restricted to rare taxa, which could be important for microbial community stability under changing conditions as seen in other host-microbiome systems. The presence of symbionts like Spiroplasma or Chlamydiae , identified in this study for the first time in Heliconius , could play a vital role in their behavior and evolution by vertical transmission. Altogether, our study represents a step forward into the description of the microbial diversity in a charismatic group of closely related butterflies. 
    more » « less